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Abstract

We study the asymptotic behavior of the solutions to a relaxed Dirichlet problem

associated with p-homogeneous strongly local forms, p >1, having a local
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1. Introduction

The present paper is focused on the asymptotic behavior of the
solutions to a relaxed Dirichlet problem associated with p-homogeneous
strongly local forms of Riemannian type. In [1], it has been proved that
the class of relaxed Dirichlet problems associated with p-homogeneous
strongly local forms of Riemannian type in a r.c. open set is compact with

respect to the y-convergence. Here, under additional assumptions, we

prove the compactness of the class of relaxed Dirichlet problems
associated with p-homogeneous strongly local forms of Riemannian type
in a r.c. open set Q with respect to the convergence in D"[Q],1 < r < p,
(see the end of the section for the definition), and we give a sort of
corrector for our problem. The lines of proof are a refinement, adapted to
our framework, of the ones in [9]. We recall that the case of bilinear
Dirichlet forms of Riemannian type has been studied in [8] under slight
stronger assumptions. Our framework applies to the subelliptic

p-Laplacian eventually with a weight in the intrinsic A, Muckenhoupt’s

class, or to the metric p-Laplacian, in the case, where the related norm (in
the domain) defines a uniformly convex space. In the following of this
section, we recall the basic definitions and properties relative to our
framework.

We consider a locally compact connected complete separable
Hausdorff space X with a metrizable topology and a positive Radon
measure m on X such that supp[m] = X. We observe that every bounded

set in X is r.c.. We consider a strongly local p-homogeneous Dirichlet

form, p >1, IXu(u, v)(dx) as defined in [5] (a(u)= %u(u, u)). We

denote by Dy < LP(X, m), the domain of the form endowed with the

natural norm. The strong locality property allows us to define the domain
of the form with respect to an open set O, denoted by Dy[O], and the

local domain of the form with respect to an open set O, denoted by
Dy, [0]. Associated with the form a capacity cap,, (E, O) can be defined

and it can be proved that every function in D, is quasi-continuous and is

defined quasi-everywhere [5].
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We just list the main properties of strongly local p-homogeneous

Dirichlet forms and we refer for the proofs to [5]:
(@) w(u, v) is homogeneous of degree p —1 in u and linear in v; we

also have w(u, u) = pa(u).

(b) Chain rule: if u,v e Dy and g e C'(R) with g(0)=0 and g’
bounded on R, then g(u), g(v) belong to D, and

n(gw), v) = | 8'(w) [P g'(u) plu, v). (1.1)
Moreover,
wu, g)) = g'(v) nly, v). (1.2)
Then
a(gw) = | &) |” alu). (1.3)

The assumption on the boundness of g’ can be replaced by the

assumption u, v € L”(X, m).

(c) Truncation property: for every u, v € D
wu’, v) = 1m0, v), (1.4)

M(u’ U+) = 1{v>0}u(u’ U)’ (15)

where the above relations make sense, since u and v are defined quasi-

everywhere.

(d) Leibniz rule with respect to the second argument:
w(u, vw) = vu(y, w) + wu(y, v), (1.6)

where u € Dy, v, w € Dy N L”(X, m).

(e) Leibniz inequality: let u, v € Dy N L*(X, m), then wv € Dy N L”
(X, m), and
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a(uv) £ C(|ul|Pa) +| v [Pa(w)),
where u € Dy, v, w € Dy N L*(X, m).

(f) For any f e L (X, a(u)) and g € LP(X, a(v)) with 1/p+1/p =

1, fg is integrable with respect to | u(u, v)| and Va € R*

| fg |u(w, v)|(dx) < 227 0P| £ |P a(u) (dx) + 2P a”P7Y)| g [P a(v) (dx).
(1.7

Assume that we are given a distance d on X, such that a(d) < m in the

sense of the measures, and

(1) The metric topology induced by d is equivalent to the original
topology of X, and we also assume for sake of simplicity that
SUpyex d(xg, y) = +o (we can replace this last assumption by: let Q be

the r.c. open set in consideration, there exists a point in Q¢ with positive
distance from Q).

(i1) Denoting by B(x, r), the ball of center x and radius r (for the

distance d), for every fixed compact set K, there exist positive constants
co and ry such that

m(B(x, r)) < com(B(x, s)) (g)v Ve K and O<s<r<rn. (1.8

We assume without loss of generality, p < v.

From the properties of d, it follows that for any x € X, there exists a
function ¢(-) = ¢(d(x,.)) such that ¢ € Dy[B(x, 2r),0< o<1, =1 on

B(x, r) and a(¢) < lm, [6].
P

We also assume that the following scaled Poincaré inequality holds:

for every fixed compact set K, there exist positive constants ¢y, , and

k > 1 such that for every x € K andevery 0 <r <n
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IB(x,r)lu — Uy, [Pm(dx) < ¢;r? J.B(x’kr)u(u, u)(dx), 1.9

1

m(B(x,)) IB(x, r)um(dx).

for every u € Dy,.[B(x, kr)], where u, , =

A strongly local p-homogeneous Dirichlet form, such that the above

assumptions hold, is called a Riemannian Dirichlet form.

From (1.9), we can easily deduce by standard methods that for every
fixed r.c. set Q,

[ midx) < cy(@) o) (@)

for every u e Dy[Q], where ¢y depends only on Q; then f QOL(u) (dx) is

an equivalent norm on Dy[Q]. Moreover, the embedding of Dy[Q] in

LP(Q, m) is compact. The following technical lemma will be utilized in

Section 7.

Proposition 1.1. For every p-quasi-open set U in the open set Q,
there exists an increasing sequence of functions v, € Dy(Q), which

converges to 1g7 g.e. in Q.
Proof. Let U be quasi-open in Q. Then, there exists a sequence

U, c Q with cap,(Uy, Q) S% such that the sets Ay, = UUU, are
open. We can assume without loss of generality that the sequence Uy, is

decreasing.

Therefore, for every k, there exists an increasing sequence of non-
negative functions cbi e L”(Q)N Dy[Q] with oc(d)fl) < MF, converging to
1y, pointwise g.e. in Q.

Since for every k, we have capp(Uk, Q) < %, there exists
u, € Dy[Q] such that qe. w, =1 in U, 0<u;, <1 ge. and
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J-Q(x(uk)(dx) < % (it is enough to choose u; as the potential of U, in

Q). This implies that a subsequence of u; converges to 0 g.e.. Moreover,

as cbi < 1y,, wehave (4)2 —up)" <1y qe.in Q. Let us define

k +
vp = maxy<pep (0 —ug ), ¥ = supy, vy,
Then vy, € Dy[Q], v, >0 qe. in Q, moreover, the sequence vy is
increasing and ¥ < 17 q.e. in Q.

On the other hand, for every h >k, we have vy > ((I)f’l —uy). As

U c A, we obtain v > (1-u) q.e. in U. Taking the limit along a
suitable subsequence, we obtain y >1 q.e. in U. This shows y = 1,

which concludes the proof.
2. The Space of Measures M} (Q) and the Operator

2.1. The measures
We denote by MZ(Q), the set of all non-negative Borel measures
such that

(i) &(B) = 0 for every Borel set B < Q with cap,(B, Q) = 0.
(i) ¢(B) = inf{¢(U), U quasi-open, B c U}.

Property (i1) is a weak regularity property of the measure (. Since

any quasi-open set differs from a Borel set by a set of capacity zero, then

¢(U) is well defined when U is quasi-open and ¢ satisfies (i), so condition
(i1) makes sense. The condition (ii) will be essential in the proof of the

uniqueness of the y"-limit. Finally, we observe that every non-negative

Radon measure on Q is in the class M (Q).

If ¢ is a non-negative Borel measure, then L' (Q, {), 1 < r < +w, will

denote the usual Lebesgue space with respect to the measure (.
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If (e M{(Q), then the space Dy[Q]N LP(Q, ¢) is well defined

because the functions in Dy[Q2] are defined g.e. [5], and then ¢-almost

everywhere in Q. Moreover, the space Dy[Q]N LP(Q, ¢) is a Banach

space for the norm

p _ p p
1N T S TT .

A non-negative Borel measure, which is finite on compact sets of Q is a

non-negative Radon measure on Q. We say that a Radon measure o

belongs to DL[Q], ( where D7[Q]=(D, [Q]),) if there exists f € D71[Q]
such that

<f,o>= jg(pdcs, 2.1)

for every ¢ € Dy[Q]N Cy(Q), where < -,- > denotes the pairing between
D7[Q] and Dy[Q]. We identify o and f. We observe that for every non-

negative f € D_l[Q], there exists a non-negative Radon measure ¢ such

that (2.1) holds. The proof is analogous to the one for distributions in
euclidean spaces and is founded on the density of Dy[Q] N Cy(Q) both in

Dy[Q] and in Cy(Q) for the uniform convergence. Moreover, every non-

negative Radon measure in D™'[Q2] belongs to M5 ().

2.2. Properties of the energy density of the form

We will assume that, for any u € D, the Radon measure o(«) has a
density in L'(X, m), denoted again by a(u)(x). By (1.7), we obtain that
for any u, v € Dy, the Radon measure u(u, v) has a density in LI(X, m),

denoted again by p(u, v)(x).

We also assume that there exist some constants Cy, C; > 0 such that

for any wq, ug, v € Dy
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w(uy, up —ug) — wug, up —ug) = Coaluy —uy), (2.2)

|M(ul7 U)—M(Uz, l))l (2.3)

< 0\ (atw ) +atue)s ) -t o )ba)},

a.e.,if p > 2 and

w(uy, ug —ug) — w(ug, ug —ug) (2.4)

1 1\P2 2
> co(a(u1 Yo+ a<u2>p) oy — g3,

p-l 1
[n(uy, v) = plug, v)| < Croluy —ug) » av)r, (2.5)
a.e,if 1 < p < 2. We also assume
p-2 p-1 p-1 1
w1 P upnlug, v) — wW(wug, v)| < Clug|” oy ) » alv)p, (2.6)

for any uy, ug, v € Dy, uy, uy € L°(X, m).

The above conditions hold in the case where a(u) = z:)i

|Li (w)|?,
=1

where L; : Dy — LP(X, m) are linear bounded continuous operator, then

in a framework similar to the one used in [1] in the bilinear case. In
particular, our results can be applied to the case of the weighted
subelliptic p-Laplacian, where the weight is in the corresponding intrinsic
A, Muckenhoupt’s class (see [4] for the case without weight). Finally, the

above assumptions hold for the p-Laplacian in finite dimensional metric

structures of Cheeger type.

3. Relaxed Dirichlet Problems

Let Q be a r.c. open set in X, § e MP(Q), f e D'[Q], v € D[Q]N

LP(Q, ¢), where D[Q]={ve Dy [Q]; jga(v)m(dx) <+ We also

denote by D"[Q],1 < r < p, the closure of D[Q] for the convergence
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defined as u,, converges to uin D"[Q], if u, converges to uin L' (Q, m)

1
and j a(u, —u)p converges to 0 in L' (Q, m). We consider the following
(O]

relaxed Dirichlet problem

J w(z, v)m(dx)+J |u [P 2uvt(dx) =< f, v > (3.1)
Q Q

ue DQ)NILP(Q,C), (u-v) e DyQ), for every v e Dy(Q)NLP(Q, §).
The problem (3.1) has a unique solution (see Theorem 4.1). We are

interested in particular to the case y = 0, i.e.,, u € Dy[Q], in this case we

refer to this problem as (3.10). In this paper we study the asymptotic

behavior of relaxed Dirichlet problems (3.10) related to a sequence of

measures §, € ME(Q).

Let ¢, be a sequence in ME(Q) and ¢ e ME(Q). Let f ¢ D'[Q].

Let u, u,, be the solutions of the problems

J. w(u, v)m(dx) + I | u |p72qu(dx) =< f,v> (3.2)
Q Q

u e Dy[QIN LP(Q, &,,), Yv € Dy[Q]N LP(Q, C,)-

J w(w,,, v)m(dx) +J~ | u, |p_2unvqn(dx) =< f,v> (3.2n)
Q Q

u, € Dy[QIN LP(Q, ¢), Vv e Dy[Q]N LP(Q, ¢). Let w, w,, be respectively,
the solutions of (3.2), (3.24) with f = 1. In Theorem 7.3, we prove that the

following two assertions are equivalent.

(a) For every f e D™1(Q)u,, converges to u weakly in Dy(Q) (We say

in this case that ,y"- converges to { in M§(Q)).

(b) w,, converges to w weakly in Dy(Q).
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We also prove that, if (a) holds, then the sequence u, converges to u

in D"[Q], for all 1 <r < p. We observe that in Theorem 4.15, we also
give a sort of correctors in Dy[Q] for our problems. Theorem 7.5 is

consequence of some compactness results, which are interesting in
themselves proved in Section 7. In particular, we prove the compactness

of the set of the solutions w of (3.2) with f =1, when { e M}(Q).

Theorems 7.3 and 7.5 are proved in Section 7. The previous sections
contain many auxiliary results relative to the solutions of (3.2) and (3.24).
In particular, in Section 5, we prove some estimates for the solutions of
(3.2) and establish some comparison principles. The asymptotic behavior
of certain sequences defined by the solutions of (3.2) and (3.2n) are
considered in Sections 5 and 6. Section 7 is devoted to prove the
compactness results. The case of the Dirichlet problems in perforated
domains is of particular interest. For every open set U < Q and every
Borel set B < Q, we define the non-negative Borel measure (p as

follows:
G) Cy(B) =0, if cap,(BNU®, Q) =0;
(i) €y (B) = +o, otherwise.

Let Q, be an arbitrary sequence of open subset with closure

contained in Q. Let f e D7![Q] and denote by u, the solutions to the

problem

IQ w(w,, v)m(dx) =< f, v >q,

n

u, € Dy(Q, ), for every v € Dy[Q,, ] extended by 0 to Q,,. Let us observe

that the above equation is equivalent to the relaxed Dirichlet problem
associated to the sequence of measures ¢, = {q . From Theorem 7.5, we

have that there exists a subsequence of Q,, still denoted by Q,,, and a
measure ( € ME(Q) such that for every f e D™![Q], the functions u,

extended by 0 to Q, converges weakly in Dy[Q] to the solution of the

relaxed Dirichlet problem (3.2) relative to f and to the measure .
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4. Preliminaries Results

4.1. Estimates for the solutions of the relaxed problems

Proposition 4.1. Let { € ME(Q), v € DIQ]N LP(Q, £). The problem

(3.1) has a unique solution. Moreover, the solution satisfies the estimate

j alu) (dx) + j | |P¢(dx) 4.1)
Q Q

< [u FIE o * ] comia)+ | [v |Pc<dx>],

o ()
where C is a structural constant.

Proof. Let jQO‘(', -)(dx) be the form defined as

j o(z, v)(dx) = j u(z + v, v)m(dx) + j Iz + 9P 2(z + p)i(dx),

Q Q Q

where z, v e Dy[Q] N LP(Q, ¢). From (2.2), ..., (2.5), the problem
JQ o(z, v)(dx) =< f, v > pia} p[a]»

z € Dy[Q]N LP(Q, §), Vv € Dy[Q] N LP(Q, £), admits a unique solution
z. Then, u=2z+yp is the solution of the problem (3.1). Let us take

v = (u - v) as test function in (3.1); we obtain
J w(u, u—y)m(dx) + I | u |p72u(u —v)(dx) =< f,u—v >.
Q Q

Then, using the Young’s inequality, we obtain (4.1).

The “uniform” continuous dependence of f on the solutions of (3.1) is

given by the following theorem.



50 MARCO BIROLI and SILVANA MARCHI
Proposition 4.2. Let { € ME(Q), uy, ug € D[Q]N L7(Q). Let 9 € D

[QINL*(Q, m), 9 >0 q.e.in Q. If 2< p < o,

CJ.Q oa(u; — ug )m(dx) + 22-p JQ|u1 — uy |P 9¢(dx)
< | oln(ur, 1 ) - plu, 11— uy))mld)

+ [ Gl —Jua [P us )y —up )pl(d).
Q

If1<p<?2,
2/p
C(J. oaluy —uy )m(dx)j
Q

< Ky, ug, o) olutn, 1~ up) ~ (g, uy - uy)m(d),

2/p
CU lug — u2|p<PC(dx)]
o
< Ko(uy, ug, @)_[Q(|u1|p_2u1 —|ug PP uy ) (uy — ug )@l(dx),

where Kl t2,0)= z(jQ(Pa(ul Jm(dx)+ J.Q(pa(u2 )m(dx))}Tp, Ko(uy,ug,9)
= o[ P oc(dx) + | Jus P oc(dx)) 5

Proof. The proof is the same of [4] and is founded on (2.2) ,..., (2.5).

Proposition 4.3. Let { € ME(Q); let fi, fo € D7'[Q], and let u;, us
be the solutions of (3.1) corresponding to f; and fy, respectively. If p > 2,
then

lur = uglPy o + I = uall? )= Clh - fo ||qD_1[Q]- (4.2)
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If1 < p<2, then

Cr(f foo O = foll Ly o (43)

2 2
s = s gy + ot = ol %

_I[Q],
where C is a structural constant, and

2(2-p)

i for0) = (R )+ Vel gy + [ atoimia) « [ i)

(@)

The proof follows as in [9] taking into account the assumptions (2.2), ...,
(2.5).

4.2. Comparison principles

Proposition 4.4. Let { ¢ MB(Q); let f € D'[Q] and let u be the
solution of (3.2). If f 2 0 in Q, then u > 0 g.e. in Q.

Proof. The results follow by using v = u A 0 as test function in (3.2).

Proposition 4.5. Let w( be the solution of the problem
J wWwq, v)m(dx) = J vm(dx), (4.4)
Q Q

wo € Dy[Q], for every v € Dy[Q]. Then wy > 0 g.e.in Q.

Proof. The function w; is a non-negative superharmonic in Q for
the form p, that is, wy > 0 and IQp(wO, v)m(dx) > 0, for every v e D,
[@],v>0. Then (wy+c¢),c>0, satisfies an Ay Muckenhoupt’s
condition in every ball B such that 2B < Q with a constant independent

of € [6]. The result follows from [6], since vy = (wq + e)_1 1s non-negative

and subharmonic in Q for the form p.

Proposition 4.6. Let C;, Gy € ME(Q); let fi, f; € D'[Q], and let
Uy, ug be the respective solutions of (3.2). If 0 < f5 and (9 < C; in Q,

then uy < ug q.e.in Q.
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Proof. By Proposition 4.4, we have ug >0 q.e. in Q. Let v =

(1 —ug)". Since 0 < v < uf and {9 <y, we have v e LP(Q, () c LP
(Q, €9). Then we can use v as test function in both the relaxed Dirichlet

problems, and we obtain a(v) = 0, so u; < ug q.e.in Q.

Proposition 4.7. Let (1, g € ME(Q) and fi, f; € D[Q], and let
uy, ug be the respective solutions of (3.2). If |fi| < fo and (g <y in Q,

then |u| < ug g.e.in Q.

Proof. By Proposition 4.6, we have u; < uy g.e. in Q. We observe
that the function —u; is the solution of (3.2) corresponding to —f; and ¢;.

So by Proposition 4.6, we also have —u; < ug q.e.in Q.

Remark 4.8. Let ¢ € Mf(Q) and let u, and w, be the solutions of

the problem (3.2.) relative to, f e L”(Q) and to f =1. From the
Proposition 4.1, the sequences u, and w, are bounded in Dy[Q]. Then,
there are subsequences still denoted by u, and w,, and two functions

u, w € Dy[Q] such that u,, and w, converge weakly in Dy[Q2] and a.e. in

Qtouandw.Let C = | f ||1L{£fg;1) y From (3.10), we have
,m

IQ“( o vym(dx) + L2| S p B g, (dx) = j om(dx),

f
Q ||f||L°°(Q)

for every v e Dy[Q]N LP(Q, £, ). Proposition 4.6 gives %l <w, g.e.in

Q. Let wy be the solution of (4.4). In virtue of the Proposition 4.6, we

have w, <wgy g.e. in Q. Then |u,|< Cw, < Cw, q.e. in Q. Hence
|u| < Cw < Cwy ae. in Q. As wy € L*(Q, m), the sequences u, and

w,, are bounded in L*(Q, m).
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4.3. Estimates involving auxiliary Radon measures
Proposition 4.9. Let { € ME(Q); let f e LY(Q, m), q = %, and

let u be the solution of (3.1) for some v € D[Q]N LP(Q, ¢). Let i, Ay, Ly be
elements of D7'[Q] defined by IQp(u, v)m(dx) = ijvm(dx) + <AV >,

+ _ + - _ -
Jgu(u , v)m(dx) = JQf vm(dx) + < Ay, U >, jQu(u , v)m(dx) = IQf vm(dx) +
< X9, U >, Vv € Dy[Q]. Then A, i, Ay are Radon measures, L, Ly > 0,
A=Ay —Ag, |A| <Ay + Ag. Moreover, for every compact set K < Q, we

have

M) < € capy(K, QP[[ulrley +1 F lsom) @4

Proof. Let v € Dy[Q], v > 0 g.e. in Q and let v, = (% JAu". Then
v, 20 qe.in Q, v, € Dy[QINLP(Q, ¢). As |ulP2uv, >0 qe. in Q,
and fv, < f'v, a.e.in Q, taking v, as test function in (3.1), we obtain
(v, =0if u<0)
I wu*, v, )m(dx) < I frv,m(dx) < lJ. from(dx),
Q Q nJo

where we use the truncation rule. Since by the truncation rule p(u", v, )

= %p.(qu, v) in {v <nu"} and put,v,) =wu", u") in {v > nu*}, we

obtain

%J.{U<nu+}“(u+’ v)m(dex) + %J‘{ +}a(u+ ym(dx) < %J.Q}”vm(dx).

vznu

Taking the limit as n — +0, we obtain
j w(w*, v)m(dx) = j u(w, v)m(dx) < j from(dx),
Q {u*>0} Q

for every v e Dy[Q],v >0 q.e. in Q. This implies <Ay, v > >0, so,

since A; € D'[Q], &, is a non-negative Radon measure.
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In a similar way, we also deduce that Ay is a non-negative Radon

measure, hence L = A; — A is also a Radon measure and [A| < Ay + Ay.

We prove (4.5) in the case 1 < p < 2; the proof in the case p > 2 1is

similar. To prove (4.5) for every ¢ > 0, we fix a function z € Dy[Q] such
that z > 0 g.e.in Q, z > 1 g.e. in a neighborhood of K and || z ”%0[9] <

cap,(K, Q) + .

[ME)| = [A(K) = 22 (K)|

= |J.Qp(u+, z)m(dx) - Jgu(u_, 2)m(dx)
+ ~[Qf*zm(olx) - J‘fozm(dxﬂ
<cf a(@ra()s m(ds)+ O f gl 2 oo

< €l 2 py eyl #1551y + €I F Iyl 2 e

< Cleapp (K, @)+ P ko + 1 £ (o)
Taking the limit as ¢ — 0, we obtain (4.5).

Remark 4.10. Under the assumptions of Proposition 4.9, if f, y > 0,
then u =u" and XA =X;. Therefore, in this case, A > 0. Hence,

jQu(u, v) < Ivam(dx) for every v > 0 in Dy[Q].

Proposition 4.11. Let g, be a sequence in D7[Q], let %, be a

sequence of Radon measures and let u, € D[Q] be such that

[ B, vIm(d) =< 0. v > 0] Dofa) +] _vhn(d),
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for every v € Dy[Q] N Cy(Q). Assume that un converges weakly in D[Q] to

some function u, g, converges in D™[Q] and L, is bounded in the space
of Radon measures (i.e., for every compact set K < Q, there exists a

constant Cg such that |A,(K)| < Cg). Then, for 1 < r < p, u, converges
to u in D"[Q]; moreover, IQu(un, v)m(dx) converges to IQu(u, v)m(dx)
for every v € Dy[Q].

The proof of this result is given in the Appendix.

Proposition 4.12. Let g, be a sequence in D7Y[Q], which converges

to some g € D7'[Q], let ¢, be a sequence in ME(Q), and let v, be a
sequence bounded in D[Q]N LP(Q, m) such that IQ|wn|an(dx) < M.

Assume that the solution u, of (3.1) corresponding to { =C,, [ = &,,

¥ = v, converges weakly in D[Q] to some function u. Then, for 1 < r < p,

u, converges to u in D"[Q]; moreover, J.Qu(un, v)m(dx) converges to
jgu(u, v)m(dx) for every v e Dy[Q].

Proof. Let g e LI(Q, m)(q = —2—); then from Propositions 4.10

p-1
and 4.11, the result follows. In the general case, the result is proved by an
approximation of g by a function fin L?(Q, m) by using the Proposition

4.3.

Proposition 4.13. Let {,, € ME(Q) be a sequence of measures. Let

u, and w, be the solutions of the problem (3.2x) relative to f € L*(Q)
and f =1. Assume that u, and w, converge weakly in Dy[Q] to some

uw,

functions u and w. For every ¢ > 0, the functions belong to Dy[Q]

V e

NLP(Q, ¢, ), and one has
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: uw uw
hrnn%Jroo(J.Ue a(un 0 v"g)m(dx) + .[Uf|un - w—\/ne |p§n(dx)j =0, (4.6)
where U, = {w > ¢fN{ul| > cw}.

Proof. For ¢ > 0 denote

E_uwn €

€
Uy, = —=+ Ty = Uy — Up.
n wve’ n n n

First step. We observe that the functions ©,, and w, (z and w) are
bounded in L*(Q, m) (Remark 4.10) and converge to u and w weakly in

Dy[Q] and strongly in LP(Q, m). The functions u, and r, are bounded

in L*(Q) (as f e L*(Q, m) (Remark 4.10) and converge to ;\L/U and

u - ﬁ weakly in Dy[Q] and strongly in LP(Q, m). Moreover, from
€

” 1 ¢ uw
Proposition 4.12, a(u, — u)p (a(u;, — oy

1
)p) converges to 0 in L"(Q),

1<r<pasn— +omo.

We recall that Dy[Q]N L*(Q, m)N LP(Q, £) <« L*(Q, ¢), for every
§ e Mp(Q). Moreover, we have u, € LP(Q, (,), then u,, r, € LP(Q,

uw

C,) As U=

=0 ae. in U, we obtain that r, converges to 0
strongly in IL”(U,, m) as n — +o.
Consider now a Lipschitz function ®, defined by ®.(¢) = 0 for ¢ < ¢,

D () = L g for e<t<2e @ (t) =1 for t > 2c. We define ¢ = @ (w)d,

| u|
(wve
Us., $ =0 in O\ U.,.

). We have ¢ € Dy[Q]NL*(Q, m),0< ¢ <1 ge.in Q,¢=1 in

By the previous remarks by using the Leibniz inequality, the

sequence 1,0 converges to 0 weakly in Dy[Q] and strongly in L”(Q, m).



ASYMPTOTIC BEHAVIOR OF RELAXED DIRICHLET ...

Second step. We define

By = [ o(hlun, 73) = wla, 13)ml)
Q

o R O A P e LA )

In this step, we prove that for ¢ fixed, we have

lim, ., ES = 0.

We write E,, as

By = | (. dr) = (s, b )m(cx)
Q

P25 ) ()

o P L G
Q

- [ rCns €)= (s, 0)m(d)
U,

€

[ un. armi@) + [ ridlun ", ()
Q Q

Jo wVe wVe

e[ (1 P et ) G, ) )

(e, 0) - n(us, 0)m(d).
U,

[ b () - [ s )

57

4.7

We have w < ¢ in Q\ U, then ® (w)=0 andso ¢ =0 g.e. in Q\ U.,.

Then the function | ﬁ |p*2 ﬁ ¢ € Do[Q] N L*(Q, m). We have

_ u p-2 u €
7wy, b )
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u - u €
= [ o, | S 1P b (i)

w0 =1)] | P b, o ()

i

Then, taking as test function v = |— ¢r, in the equation

wVe wVe
defining w,,, we obtain (¢ = 0 and a(¢p) = 0 in Q\ U,)

_ p-2
Igu(wn, | w\/el

_ u p-2 u €
- erl—wvel L yram(d).

unGyp(dx)

4 m(ds) - [

Taking v = ¢r, as test function in the equation defining u,,, we obtain

(taking into account that ¢ = 0 and a(¢) = 0 in Q\ U,).

w = ], frim(a) = [ 1l

# (oD 1 P e, i mld)

2L grm{ax)

+ -[Ue (l vae |p—2 wt\i/ - wWw,, ¢ry) — wluy,, ¢r, )]m(dx)
- A CAECRC

S FAEY Ly R e

Let us recall that since r;, is bounded in Dy[Q], it converges strongly to 0

. . u .
in LP(U,, m), then a.e. in U,.. Moreover, u, and are bounded in
€

Dy[Q] and wl\t/ is bounded in L*(Q, m).
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It follows that I,ll, I,ZL, I,%, I,g converge to 0. The Young’s inequality
gives the result about I ,1L and I ,ZL Concerning [ ;O{, we recall that
w(w,,, wL\/e) converges in I}(Q, m) (see Remark A.2) and the result
easily follows. Concerning I 2, the method of the proof is the same, since

w(u,, §) and p(u,, ) converge in LYQ, m) (see the Appendix).

Concerning I f{ , the result follows as in [9], taking into account (2.6).

Third step. If p > 2, the Theorem 4.2 gives
[ satim(d@x) 222 il oca(d) < B, *8)
Q Q

and the proposition follows by Step 2. If 1 < p < 2, we observe that the

sequences |u, "Lp(Q’Cn) and |w, ”Lp(Q’Cn) are bounded by Theorem 4.1.
Since u and wL\/E belong to Dy[Q]N L”(Q, m), we conclude that

ler, "Lp(Q’Cn) and |r, "Lp(Q’Cn) are bounded too. By Theorem 4.2, there

exists a constant K such that

j do(rs Ym(da) + 22°P j Poc, (dx) < (KES /2. (4.9)
Q Q

€
rn

Taking (4.8) and (4.9) into account, we obtain from the Step 2 that for
every p > 1,

limn_,m(". a(r; Jm(dx) + 22_pj |r,§|pcn(dx)] = 0. (4.10)

U2E UZe

As wV2c=wVe qe. in U we have r, = u, — U e. in U
= qg.e. ¢ n = Up w\/ze qg.e. e+

Therefore, (4.10) implies (4.6) with ¢ replaced by 2e.

Proposition 4.14. Let f € L*(Q, m), let u,, w,, u, and w be as in

Proposition 4.13. For every ¢ > 0, define V, = {w < ¢}. Then

lim. o lim,,_, (J
V.

€

o, ym(dx) + j § |un|p(;n(dx)J ~0. (411)
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Proof. For every ¢ > 0, let ®, be the Lipschitz function defined at
the end of the first step of Proposition 4.12, and let z° € Dy[Q]N L*
(Q, m) be the function defined by 2° =1-® (w). As 2° >1 ge. in Q

and z° =1 q.e.in V. by (3.2s), we have

[, et m(@)+ [ Jun7c,(a)

IA

i z‘a(u,, )m(dx) + J. |un|P2°C, (dx)
Q Ve

= [ty = () + [ Juey P20 (d) = [, 2 Iml)

- funzem(dx)—j u,W(uy,, 2°)m(dx).
Q Q

Let us observe that u, converges strongly to u in LP(Q, m), and then
a.e.in Q and it is bounded in L*(Q, m). Moreover, w(u,, z2°) - w(u, z°)

in L}Q, m) (see Remark A.2). Then JQ u,W(u,,z )m(dx) - IQ up(u, z°)m

(dx). Finally, we obtain
it [ o ) [ i) @12)

< Iquzem(dx) - IQuu(u, z° )m(dx).

Let us observe that z° is bounded in L*(Q, m) and converges to the
characteristic function of the set {u = 0} as ¢ — 0. Then uz‘ converges

to 0 strongly in LP(Q, m). Let us observe that suppz® = {0 < |w| < 2},
then

lim,_,, I | u|P oz )m(dx) = 0.
Q

Taking the limit ¢ — 0 in (4.12), we obtain (4.11).
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Proposition 4.15. Let f € L*(Q, m), let u,, w,, u, and w be as in

Proposition 4.13. For every ¢ > 0, define W, = {w > ¢} N { u| < ew}. Then

lim,_,, limn%mU‘W a(u,, Jm(dx) + JW |, |p§n(dx)J = 0. (4.13)

Proof. For every ¢ > 0, let ®, be the Lipschitz function defined at

the end of the first step of Proposition 4.13. As wl\t/ e Dy[Q]NL*(Q, m),
the function z° =1 —@e(%j belongs to D[Q]N L”(Q, m). Since z° > 0

g.e.in Q and z° =1 on W., by the same computations as in Proposition

4.13, we obtain

€

hmn%MUW a(u, )m(dx) + JW |un|an(dx)j (4.14)

< JQ fuz‘m(dx) - IQ up(u, z° )m(dx).

Let us observe that z° is bounded in L*(Q, m) and converges to the
characteristic function of the set { = 0}. Then uz® converges to 0 strongly

in LP(Q, m). Moreover, suppz‘ < {0 <|u|<2¢wVe)}. We can now end

the proof by the same computations as in Proposition 4.14.
From Propositions 4.13, 4.14, and 4.15, it follows:
Theorem 4.15. Let (,, € Mg(Q) be a sequence of measures. Let u,,,

wy,, u, and w be as in Proposition 4.13. Assume that u,, and w, converge

weakly in Dy[Q] to some functions u and w. We have

. . uw uw
lim,_, hmn_HOOU.ro(un - wvnejm(dx)+ ngu" - w\/ne |P§n(dx)j =0.

uwy,

The function defines a corrector in D[] for our problem.
€
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5. Asymptotic Behavior of Certain Sequences

Let ¢, e ME(Q) and f e L*(Q, m). Assume that u, and w, are
the solutions of the problem (3.2,) relative to f and f =1, and that u,
and w, converge weakly in Dy[Q] to some functions u and w. In this

section, we will study the behavior of the following sequences

u |p—2

v who), (5.1)

H(unyw?z(\o)_“(wn,l WV e

-2 u 2 u _
[ Jenl? P unnliot, @) - [ |17 ok Poc, (@), (52)
where B> (p-1)V1 and ¢ € Dy[Q]N L*(Q, m). The estimates will be
useful in the proofs in the following sections of the paper. For 1< p < 2,

u

the function | "y
€

| “2_Y_ does not belong to Dy[Q], then the formula
wVe

(5.1) and (5.2) are not correct. We introduce the locally Lipschitz function
Y. (t) defined by:

W (t) = [fP 2 ] > e, Wo(t) = PR | < o (5.3)
. u p—2 u u .
and we replace in (5.1), (5.2) | v | v by ¥, ( v ). We begin

with an estimate in U, = {w > ¢/ N {u| > cw}.

u

Lemma 5.1. Let ¢« >0 and B >1 and define v, = ¥, ( oV
€

) € Dy

[Q]N L*(Q, m). Then the sequence w(u,, w?)- w(w,, vaw?) converges

weakly in LN(U., m) as n — +w to the function p(u, wP) - p(w, vawP).
Proof. Since v, = | x |p_2 ¥ ae.in U., we have
w w

Wy, wh) - u(w,, vawl) (5.4)
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= Bw£_1(u(unr Wy ) - H( % Wy, Wy ))

1, s u U p-2 U
+BwE (“(wwn’ wn)_lwlp E“(wn’ wn))_wgu(wn’ve)
= A, + B, + C,, a.e.in U,. In a similar way, we obtain

M(U, wB ) - H(w, erB) (5-5)

= Bwﬁ_l(“(u7 ZU) - | % |p—2 % “(w’ w)) - wBM(w’ UE)

= A+ B+C ae.in U.. Concerning A, — A, we have from the results

in Section 5 that
) u
hmn—>+oo(l'l(un’ Wy ) - l’l( E Wy, Wy )) =0

in L'(Q, m). Then, since the sequence w, is bounded in L*(Q, m) and

converges in LP(Q, m), A, converges to A weakly in LYQ, m).
Concerning B, — B, we have that B, converges to B a.e. (see Theorem

A.1). From (2.6), the sequence B,, is also uniformly integrable; then B,

converges to B in IL}(Q, m). Concerning C, — C, we have that C,

converges to C a.e. (see Theorem A.1) and the sequence C,, is uniformly

integrable; then C,, converges to C in oy (Q, m) and the result follows.

Lemma 5.2. Let ¢ > 0 and B > 1 and define v, = ¥ (

L )e Dol

N L*(Q, m). Then for every ¢ € Dy[Q]N L*(Q, m), we have
[ 1un, whoymidx) = [ u(ewn, vaokpIm(az)
Q Q
= [ G wPom(@x) - | _u(w, varPoym(dx) + Ky,
Q Q

€

where lim._,g lim sup,, ,,,, R, = 0.
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Proof. For every ¢ > 0, we have
[ . whomm(@x) - | _u(w,. vackomidx) = 45 + By + C;.

where

S n

_ j o, wh)(dx) - j ou(wy, vl ) (dx);
U, U.

S

B = IV ou(uy,, wE)(dx) —J. o(w,,, vewg)(dx);

Gy, = | _wlhutun, 0)(@)= [_vaofutew,. o) (@)

In a similar way, we define A°, B°, C* by replacing u,, and w, by v and

w, SO
I n(u, wPe)m(dx) —J w(w, vaole)m(dx) = A + B + C°.
Q Q

By Lemma 5.1, we have

lim, ,,, A, = A", (5.6)
for every ¢ > 0. We also have

lim, ,,, C, = C". (5.7

In fact (see Remark A.2), u(,, ¢) - u(u, 9), w(wy,, ©) > w(w, ¢) in

LI(Q, m), wf‘l is bounded in Q and converges to wP a.e.in Q, wP and v°

are bounded in Q.

We now consider the term B,, — B°. For every measurable set E c Q,

we define

1(E) = B ow) w(uy, w, m(d);

1(E) = B _ovaol nlay, w, Imid);
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I;3(E) = B[ _owlu(w,, v m(dx)
E

In a similar way, we define I'(E), I2(E), I°3(E) by replacing u,, and

w,, by u and w. We have

|By, - B| < |IL(V.UW.)|+|IY(V.UW,)

(5.8)
+ | I 2(V)| + [I92(V)| + | I 2(W,)|
I%(W,)

+ I53(V.UW,) - I°3(V.UW,)

+

Since B >1, the sequence wP! is bounded in L*(Q, m). Then by
Propositions 4.14 and 4.15,

lim, o lim,, oo (|11 (V. UW,)| + | I;%(V.)]) = 0. (5.9)

In a similar way, we prove
lim, (I (V. UW,)| +|[I2(V,))) = 0. (5.10)
We have |u| < ew q.e. in W,, so we also have v, < Pl ge. in W.. As
wP™ is bounded in L*(Q, m), then we have |I;%(W,)| < Kepflj.Qa(wn)

m(dx) for a suitable constant K. As w,, is bounded in Dy[Q], then we

conclude that

lim, o lim,,_, .| 15 2(W,)| = 0. (5.11)
In a similar way, we prove
lim,_,o|I%2(W,)| = 0. (5.12)

We observe that p(w,, v.) > w(w, v.) in LHQ, m) (see Remark A.2), and

w, — w a.e.in Q and is bounded in L”(Q, m). Then

lim, . I; (V. UW,) = I°3(V. UW,). (5.13)
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From (5.8)-(5.13), we have

lim._,o lim,_, .|B, - B°| = 0. (5.14)
We recall that R, = A, — A+ B, - B +C,, - C°, then the result
follows from (5.6), (5.7), and (5.14).

Lemma 5.3. Let (,, € MJ(Q). Let ¢>0 and B=(p-1)V1 and

uwy,

define u,, = ” Then

Ve’

P2 whot , (dx)

€
un

[ lunl upnliotn () - |
U( Uc

converges to 0 as n — +o, for every ¢ € Dy[Q]N L*(Q, m).

Proof. Let ¢ € Dy[Q]N L*(Q, m) and r, = u, —u,,. We recall that
the sequences u, and u,;, are bounded in L*(Q, m), then there exists a

P2ycql < ClreP7L. Since w, is

constant C such that |u, [P 2u,o - |u r,
bounded in L”(Q, m), there exists a constant K such that w? < Kw,.

Then

[ el wefiota(@) - [ Jui P usuofioc,(d)

€
un

€ €
rn rn

< CK J'
Ue

The result follows from Proposition 4.13.

€

P, (d) < CK( [ pcn<dx>f[ [, wfzcnux)]%.

Lemma 5.4. Let ¢, € M{(Q). Let ¢ >0 and B2 (p-1)V1 and

define v, = ¥( wL\/e ) € Dy[Q] N L*(Q, m), and let
By = [ JunPwpachioly(dx) - [ vaok 7 og, (dx),
Q Q

where ¢ € Dy[Q] N L*(Q, m). Then lim._,o lim,_, . |E,| = 0.
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The proof is the same as in Lemma 4.4 [9] by using the Lemma 5.3

and taking into account Propositions 4.14 and 4.15.

6. The Case f =1

In this section, we will study the properties of the set K(Q) of the

functions w such that
w e Dy[Q], w > 0 q.e.in Q,

and
JQ ww, v)m(dx) < J.va(dx),

for every v e Dy[Q].

The results of the present section will be useful in the next section to

investigate the convergence of the relaxed problems.

Let us observe that, if w is the solution of the Dirichlet problem
[ utewo, vim(@x) = | vm(ax).
Q Q

wo € D[R], for every v e Dy[Q], then by Proposition 4.5, we have

0 < w < wy, for every w e K(Q). As wy € L*(Q, m), then the functions
w in K(Q) are uniformly bounded. We will also prove that K(Q) is also

weakly compact in D[Q].

Given w € K(Q2), we define the Radon measure ¢ by

<o,v>= J (v - ww, v))m(dx), (6.1)
Q

S0 0 € D_l[Q] and is non-negative, then it is a non-negative Radon

measure.
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Our aim in this section is to prove the characterization of K(Q) as the

set of the solutions of all relaxed Dirichlet problems (3.2) corresponding to

f=1.
Theorem 6.1. The set K(Q) is compact in the weak topology of
Dy[Q]. Moreover, a function w € Dy[Q] belongs to K(Q), if and only if

there exists a measure ( € /\/lg(Q) uniquely determined by w such that w

is the solution of the relaxed Dirichlet problem (3.2) relative to the Borel

measure (. The measure ( is uniquely determined by w € K(Q). More

precisely, for every w € K(Q) and for every Borel set B — Q, it results
do .
&B) = [ S0, if cap, (BN {w = 0}, ) =0, (6.2
Bw?

E(B) = +w, if cap,(BN{w = 0}, Q) > 0,
where ¢ is the non-negative Radon measure defined in (6.1).

Before to prove Theorem 6.1, let us observe that from (6.2), we have

(BN {w > 0}) = j _wP (),

for every Borel set B < Q.
To prove Theorem 6.1, we need some preliminaries results.

Lemma 6.2. Let { € ME(Q) and let u € Do[Q]N LP(Q, §). Let u,, €

Dy[Q]N LP(Q, €) be the solution of the problem

[ s vIml@) + s P up0c(as)
Q Q
+ nJ‘Q|un|p72unvm(dx) = nIQ| u |p72uvm(dx),

for every v e Dy[Q]N LP(Q, §). Then u,, converges to u strongly in Dy[Q]
and in LP(Q, ¢).



ASYMPTOTIC BEHAVIOR OF RELAXED DIRICHLET ... 69

Lemma 6.3. Let { € ME(Q) and let w be the solution of the problem
(3.2) with f =1. Then {(B) = x, for every Borel set B — Q with cap,,
(BN {w = 0)) > 0.

The proofs are the same as in [9], since they depend on Theorem 4.2

and on the quasi-continuity of the functions in Dy[Q], [5], but do not

depend on special properties of the form.

Lemma 6.4. Let L, v e M}(Q). Assume that there is a function w in

Dy[Q]N LP(Q, )N LP(Q, v) such that

J.Q ww, v)m(dx) + J-Q| w |p_2wv7\(dx) = J.va(dx), (6.3)

IQ ww, v)m(dx) + J‘Q| w |p_2wvv(dx) = Igvm(dx), (6.4)

for every v e Dy[Q]N LP(Q, X)) N LP(Q, v). Then i = v.

The proof is the same as in [9], since it depends on comparison
principles, on Proposition 1.1, and on the quasi-continuity of the functions

in Dy[Q], [5], but does not depend on special properties of the form.

Proof of Theorem 6.1. At first, we prove that K(Q) is compact in
the weak topology of Dy[Q]. Let w,, be a sequence in K(Q2). Since K(Q)
is bounded in Dy[Q], we may assume that w, converges weakly in

Dy[Q] to a function w. We have to prove that w e K(Q).
Consider < o, v >= ijm(dx) - IQu(wn, v)m, v e Dy[Q]N Cy(Q); o),

is a bounded sequence of positive elements in D1[Q]. Then o, is also a

bounded sequence of Radon measures, i.e., 6,,(K) is bounded for every

compact set K — Q. By Remark A.2, we have IQu(wn, v)m(dx) —

Igu(w, v)m(dx), for every v € Dy[Q]. Then
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J ww, v)m(dx) < I vm(dx),
Q Q

for every v € Dy[Q]. From the comparison principles, we have w > 0 g.e.

in Q. Then w e K(Q).

As second step, we assume that € MJ(Q) and that w is a solution
of (3.2) with f =1, and we prove that w € K(Q).
From the comparison principles, we have w > 0, then for every
p-2
v >0, we have Igl w [P wul(dx) 2 0, so jQu(w, v)m(dx) < _[va(dx).

Then w e K(Q).

As third step, we assume w € K(Q) and we prove that there exists

§ € ME(Q) such that w is a solution of (3.2) relative to ¢ and f = 1. The

proof is analogous to the one given in [9], since it is founded only on the
properties of the measure { and on the quasi-continuity of w.

Lemma 6.5. Let { € ME(Q), let w be the solution of (3.2) relative to
¢ and f=1, and let B >1. Then, the set {wPolo € Dy[Q]N Co(Q)} is

dense in Dy[Q]N LP(Q, ¢).

Proof. We have w € Dy[Q]N LP(Q, ()N L*(Q, m) and B >1, then
the function wPe isin Dy[Q]N LP(Q, ) N L*(Q, m) for every ¢ e Dy[Q)]
NCy(Q).

To prove the result, we have to find for every function u € Dy[Q]
NLP(Q, ¢), a sequence ¢, € Dy[Q]N Cy(Q) such that wPe, converges

to u both in Dy[Q] and in LP(Q, ¢). By a separation of the positive and
negative part and by an approximation by truncation, we may assume

ueL”(Q,m)and u >0 ge.in Q.
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Let u,, be defined as in Lemma 6.2. By the comparison principles, we

have 0 < u, < Cw qe. in Q, where CP™! = nu ||§;EQ). From Lemma

6.2, u, converges to u both in Dy[Q] and in LP(Q, {). As consequence,

we may assume without loss of generality that there exists a constant C

such that 0 <u < Cw qe. in Q. We observe that {(u—Ce)" > 0}
u. u.

c{w>¢l. Let u.=(@w—-Ce)" for arbitrary ¢ > 0. We have = .
wh (w/\e)ﬁ

U

= DoIRIN L*(@, m)
w

We recall that u, € Dy[Q]N L*(Q, m), then

There exists a sequence ¢, . € Dy[Q]N Cy(Q) bounded in L*(Q, m),

which converges to z, = u_% in Dy(Q), then g.e. in Q, then also ¢- a.e.
w

in Q.

We recall that w e Do[Q]NL*(Q, m) and B =1, then wPo, .
converges to wPz, = u, in Dy[Q].

We want to prove that, it also converges in LP(Q, {). We have that
wB(pn,E is bounded in L*(Q, m)(N LP(Q, ¢), then is bounded in L*(Q, ¢).
Moreover, it converges (- a.e. to wﬁze = u,. Then, it converges strongly

in LP(Q, ¢) (use the dominated convergence theorem).

As u, converges to u as ¢ — 0 both in Dy[Q] and in LP(Q, §), the

result follows.
7. The y"- convergence

7.1. Definition of the y"- convergence

In this section, we introduce the notion of y"- convergence in M§(Q).

This enables us to conclude about the object of the paper.
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Definition 7.1. Let (,, be a sequence in M§(Q) and let { € ME(Q).

We say that ¢,, y"-converges to ¢, if for every f e D_l[Q], the solutions
u,, of the problem (3.24) relative to f and ¢,, converge weakly in Dy[Q] as

n — 4o to the solution u of the problem (3.2) relative to f and (.

Remark 7.2. The solution of the problem (3.21) depends continuously
on f uniformly with respect to ¢, (Theorem 4.3). Then a sequence {,, y"-
converges to &, if the solution of the problem (3.2,) relative to f and g,

weakly converges in Dy[Q] to the solution of the problem (3.2), for every f
in a dense subset of D1(Q) as L*(Q).

Let ¢, be a sequence in MF(Q) and let w, be the solution of the

problem (3.2n) relative to f =1, and let w be the solution of the problem
(3.2) relative to [ = 1.

Theorem 7.3. Let (,,, { € ME(Q), and let w,(w) be solution of (3.2v),
(3.2) relative to f =1 and (,,(¢). The following conditions are equivalent:

(a) w,, weakly converges to w in Dy[Q].

(®) &,, yM- converges to C.

Proof. The implication (b)= (a) is direct consequence of the
definition of y"- convergence taking f = 1.

Assume that (a) holds. Given f e L”(Q), let u,, be the solution of the
problem (3.2n). From Theorem 4.1, we have that u,, is bounded in Dy[Q],
then we may assume that u, weakly converges to some function
u e DO [Q]

We have to prove that u is a solution of (3.2).

By the comparison principles, we have |un| < Cw, q.e.in Q, where

1
C=|f "i‘;}g)' As n — 4o, we have |u| < Cw g.e.in Q.
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For ¢ > 0, let ¥, be the locally Lipschitz function defined in Section 5

and define v, = ¥, ( ). We have v, € Dy[Q]NL*(Q, m). Let B>(p-1)

_u
wVe
V1 and let ¢ € Dy[Q]N Cy(Q). We recall that w, € Dy[Q]N L*(Q), so

we can take v = wgcp as test function in (3.2n) and v = vew[,‘)’L(p as test

function in (3.2y) relative to f = 1. We obtain

[ 1un, whoim(@x) - | e, vaokoim(ax) .
Q Q
+ | Junl? Puplog, (@) = | jwnlP wvafeg, (@)
Q Q

= j fwbom(dx) - j vawbom(dx).
Q Q
From Lemmas 5.2 and 5.4, we obtain

[ uwn, whowm(@x) - [ u(wy, vaokom(dx) 12)
Q Q
[ lunl? P upnliota(d) - w70, (dv)
Q Q

- j w(u, wPe)m(dx) - j u(w, vawPo)m(dx) + RS,
Q Q

= 0.

with lim,_,q lim sup,_, .| R,

As w, is bounded in Dy[Q], then it converges strongly to w in

LP(Q, m). As consequence for every ¢ > 0, we have
i [ fohom(ae) - [ viom(as)|
Q Q

= .[g fwPom(dx) - J‘Q vaoPom(dx).

The above limit gives
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[ nae wPoIm(dx) - [, vaoPo)midz)
= IQ fwPom(dx) - J.Qvewﬁcpm(dx) + RS,

where lim,_,o|R‘| = 0.
Defining < o, v >= IQ[U — u(w, v)]m(dx), we have that o e D7'[Q]
defines a non-negative Radon measure. From the last inequality, we have

I w(u, wPe)m(dx) +J vawPoo(dx) = J fuPom(dx) + R°. (7.3)
Q Q Q

We recall that |u| < Cw g.e. in Q, then from (5.3), we have v, <
(C Ve)(p 1) g.e. in Q. Recalling the definition of ¥.,, we obtain the
convergence q.e. in Q of v.wP to | u |p72uwﬁ_p+1. As v.wP is bounded in
L*(Q, m), we have lim., IQvng(pc(dx) = jgl u [P 2 uwP =P oo(dx).

From (7.3), we have
JQ w(u, wPe)m(dx) + J.Q| u |p72uwﬁ_p+1(pcs(dx) = J.Q fwPom(dx).

From Theorem 6.1, we have

J' | u |p—2 uwB_p+1qoc(dx) _ j }| u |p_2uwﬁ_p+1(pc(dx)
Q 0

{w>
= J‘Q| u |p_2uwﬁ(p§(dx).
Then from (7.3), we obtain

IQ n(u, wPe)m(dx) + Igl u [P 2 uwPot(dx) = jgfw%m(dx).

Taking into account Lemma 6.5, we have that u is the solution of (3.2)

relative to ¢ and f. Then ¢, y"- converges to C.
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Remark 7.4. The uniqueness of the y"-limit is an easy consequence
of Theorem 7.3 and Lemma 6.4.

7.2. Compactness and density results

The following result proves the compactness of M§(Q) with respect

to the y"- convergence.

Theorem 7.5. Every sequence in ME&(Q) contains a y"- convergent
subsequence.
Proof. The result follows easily from Theorems 6.1 and 7.3.

The case of Dirichlet problems in perforated domains is a particular
case and it is considered in the following theorem, which is a consequence
of Theorem 7.5.

Theorem 7.6. Let Q,, be an arbitrary sequence of open subsets of Q.

Then there exists a subsequence, still denoted by Q,, and a measure

L e MB(Q) such that for every f e D7'[Q], the solution u, of the
problem IQ Wy, v)mldx) =< f,v >piq, | Dy[a, | ¥n € DolQn], for every

veDy [Q,], extended by 0 to Q, converges weakly in Dy[Q] to the
solution u of the problem (3.2) relative to a suitable Borel measure

¢ e MOP(Q).

Proof. The conclusion follows easily from Theorem 7.5 and Remark
7.2.

Theorem 7.7. Every measure (e ME(Q) is the y"-limit of a

sequence C, of Radon measures in /\/lg(Q) such that the sequence of
solutions w, of the problem (3.2n) relative to f =1, and (, converges

strongly in Dy[Q] to the solution of the problem (3.2) relative to f =1 and
C.
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Proof. By (6.2), a measure { € M£(Q) is a Radon measure, if the
solution w of the problem (3.2) relative to f =1 and { is such that

infg w > 0, for every compact set K < Q.
We denote by w, € Dy[Q], the solution of the equation J-Q w(wo,

v)m(dx) = Iva(dx) for every v e Dy[Q], then w, satisfies the above
inequality (Corollary 4.5).

Fix ¢ € MF(Q) and denote by w e K(€), the solution of the problem

(3.2) relative to f =1 and £. We define w,, = w \/%wo. It is easy to see

that w,, is a nonnegative subsolution of the equation defining w,, so
w, € K(Q). Moreover, the function w, satisfies the inequality
infg w, > 0, for every compact set K < Q and converges strongly to w

in Dy[Q]. Then the measures (, associated to w,, which are Radon

measures, y" converge to { by Theorem 7.3.

The following result deals with the convergence of the solutions and
energies, when also f varies.

Theorem 7.8. Let (,, be a sequence of measures in ME(Q), which
yM- converges to the measure { e ME(Q) and let f, be a sequence in

D7YQ), which converges to f € DL[Q]. Define u,, as the solution of the
problem (3.2yn) relative to f, and C,,, and u as the solution of the problem

(3.2) relative to f and C. Then, the sequence u, converges to u weakly in
Dy[Q] and strongly in D"[Q). Finally, the energies o(u,)m +|u,|"¢,
converge to a(u)m + | u| PC weakly* in the sense of Radon measures on Q.

Proof. It is enough to prove that

i [ i ) [ ol 7,
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- ( j Q(])a(u)m(dx) + j Q<|>|u|1f’c(olx)]-

For every ¢ € Dy[Q]N Cy(Q). The proof of the above relation is the same

as in [9] taking into account Theorem A.1 and Remark A.2.
7.3. Localization properties

We end the section by proving the local character of the -

convergence. The following result deals with the local solutions in an
open subset U of Q, and we do not pay any care to the boundary

conditions on oU. In the following, we denote by < .,. >y, the pairing

between D~L[U] and D,[U].

Theorem 7.9. Let (, be a sequence of measures in ME(Q), which
yM- converges to the measure ¢ € ME(Q). Let U be an open subset of Q,

let f, be a sequence in D '[U], which converges to f e D '[U]. Define

u, as the solution of the problem
JUu(un’ v)m(dx) + IUlunlp_2unUCn(dx) =< fn> U >U, (7.4)

u, € D[UINLP(U', ¢,), for every U cc U, for every v e Dy[U]N LP
(U, ¢, ) with supp(v) cc U, and u as the solution of the problem

j u(u, v)m(dx)+I lu|P2uv(dx) =< f, v >y, (7.5)
U U

u e DIUINLP(U, ¢), for every U cc U, for every v e Dy[U|N L
(U, ¢) with supp(v) cc U. We have that u, converges weakly to u in
Dy,.(U), strongly in D'[Q],1<r < p, and w(uy, v) converges in L},
(U) to wu, v) or every v e Dy[U] with supp(v) cc U. Finally, the

energies olu, )m +|u,|’¢, converge to a(u)m +|u|’¢ weakly* in the

sense of Radon measures on U.
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Proof. Fix an open set U’ cc U and a function y € Dy[U]N L
(U, m) with y >0 on U,y =1 on U’, suppy c U.

We use v = pu,, as test function in (7.4), and we obtain

[ JunlPCntd) << fu vy >y [y, v, i) < 2,

for a suitable constant M. By Theorem A.1, the sequence u,, converges to

1
u weakly in Dy,.[U] and o(u, —u)p converges strongly to 0in L' (U, m),

for 1 < r < p; moreover, p(uy, v) converges in L' (U) to u(u, v) for every
v e Dy[U] with supp(v) cc U. We recall that u, is bounded in D[U].
Then Remark A.2 gives the second part of the result. Define ¢(x) = exp

1 . . o
(1 - m), if p(x) >0 and ¢(x) =0, if p(x) = 0. Then ¢ € Dy[U]NL

(U, m). Let us define z, = ¢u,,, z = ¢u. The function z, is the solution

of the problem
j w(z,, v)m(dx) +I |2, |P 2 2,0C,,(dx) =< g, v >, (7.6)
Q Q
z, € Dy[Q]N LA (Q, ¢,,), for every v € Dy[Q]N LP(Q, &,, ), where
<gnov> = | ulbun, vimdx) - | 4"l vhm(ds)
U U
w ] he"om(dn) - [ ou(un, 677 ).
U U
Define

<guv>-| e, vm(d) - | 0l v)m(ds)

+ IU foP Lum(dx) - IUvu(u, P V)m(dx).
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Taking into account (2.6), we have that < g,,, v > converges to < g, v >

uniformly with respect to v e Dy[Q] with ||v||D0[Q] <1. Then g,

converges to g in Dil[Q]. We recall that z, converges to z weakly in

Dy[Q], then from Theorem 7.8, z is the solution of the problem
J u(z, v)m(dx)+j |2|P~2z06(m) =< g, v >, (7.7
Q Q

z e Dy[Q]N LP(Q, ¢), for every v e Dy[Q]N LP(Q, ). Since ¢ =1 in
U', we have u = z in U’, then u € LP(U’, ¢). Moreover, if v € Dy[Q]N

LP(Q, ¢) with suppv cc U, then < g, v >=< g, v >o=< g, U >7, then

(7.5) follows from (7.7). The convergence of the energies follows as in
Theorem 7.8.

Theorem 7.10. Let ¢, be a sequence of measures in M} (Q), which
yM- converges to the measure ¢ € ME(Q). Let U be an open subset of Q,

then ¢, v"-converges to the measure ¢ in U.

Proof. Let f € D7'[U] and denote by u,, the solution of the problem
(3.2) relative to fand ¢, with Q replaced by U. There is a subsequence,

still denoted by u,, that converges weakly in Dy[Q] to a function

u € Dy[Q]. From Theorem 7.9, we have u € LP(U’, ) for every open set

U' cc U and u is a solution of (7.5).

To conclude, we have to prove that u e LP(U, ). The proof is the
same as in [9], taking into account that for every v € Dy[U], there exists
a sequence v,, such that v, converges strongly to u in Dy(Q), suppv,, cc

U, v, <|u| ge. in U, and wv, > 0 g.e. in U. We also recall that, if

v e LP(U', ¢) for every open set U’ cc U, then v, € L?(U, ). We may

also assume that v,, converges to u q.e. in U.
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Corollary 7.11. Let ¢, (, € M} (Q), and Q; be a family of open
subsets of Q, which covers Q. Then (,, y"- converges to the measure ¢ in

Q, if and only if ¢, y"- converges to the measure ¢ in Q; for every i.

Proof. The conclusion follows by Theorems 7.5, 7.10, and from the

uniqueness of the y!- limit.
8. Appendix

Theorem A.1. Let u;, € D[Q] with jga(uk ym(dx) < C, f, € D7HQ],
and £}, Radon measures, be sequences such that
up, — u weakly in D, [Q];
fp = f weakly in Dj-[Q];
€, — € weakly* in the space of Radon measures.

Finally, we assume

[ Hla oIm(dx) =< v > +]_vy(a),

1
for every v e Dy[Q] N Cy(Q). Then afuj, — u)p converges strongly to 0 in

L'(Q m),1<r<p.
Proof. We observe that since the sequence u; weakly converges to u

1
in D;,.(Q), then u € D[Q] and the sequence o(u, —u)p is bounded in

LP(Q, m). Then to prove the result, it is enough to prove that every

1 . .
subsequence of a(u; — u)p contains a subsequence, which converges to 0

a.e.in Q. We denote

8r = Mup, up —u) - wu, up, —u).
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By (2.2) and (2.4), to prove the result, it is enough to prove that g,

converges to 0 a.e. in Q. Fix a compact K — Q; there exists ¢x € Dy[Q]

with 0 < ¢ <1, 0g =1 on Kand a(¢g ) € L*(Q, m). Let y5 denote the

truncation by 3, i.e.,

p(y) = y for | y| < §; v(y) = Ssign(y) for | y| = 8.

We now use as test function v = ¢x¥s(up — u) € Dy[Q] (here, we use the

truncation rule and the Leibniz inequality for the form). Then,

[ G, oxvs uy —~w)mlaix)
Q
= [ brntiug, vs(ap = wmldx) + [ o5y =~ whnlaey, o5 mi)
Q Q

= {fir x5 g =) + [ oxvs g ~u)Gr(@)

We have that y5(u;, — u) converges to 0 strongly in LP(Q, m), and then
weakly to 0 in Dy[Q]. Then

limy o [ vl — (g, b m(d) = 0,

and
Limy, o0 fr Og¥s(ug —u)) = 0.

Moreover, (;, is bounded in D'[Q], and

[ #xvsus — wa(d)] < Cxlps(uy - w)l < 20k
We have so proved that, for & fixed

limk—woolj.gd)KH(uk’ vs(up —u))m(dx)| < 2Cg3.

Since by the same methods, we have
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limj e [ oxie 05y~ w)mid) = 0,
we obtain
tim ol e (g, 050 = ) = (e vy, —w)m(d) < 20,

Denote
er, = (Mg, v5(up — ) — n(u, vs5(uy, —u))).

Splitting K into the two sets Sz = {x € K; |up(x) - u(x)| < 8} and G,z =
{x e K; |ug(x)—u(x) > 8}, and using the Holder inequality, we obtain
for 6 <1

-[K egm(dx) = J.SS egm(dx) + J.GS egm(dx)

< ( j s enm(dx)) m(S) 0+ ( j senm(d)’m(G} ).
2 2
Since m(Gz) tends to 0 as k — 0, then e, is bounded in L}(Q, m) and
lim supy,_, o IKegm(dx) < (20 )P m(Q)795°.

As 86 > 0 1s an arbitrary, the above relation implies that eg converges

strongly to 0 in L'(K, m), when k — +o. Then, since K is an arbitrary
compact subset of Q, at least after extraction of a subsequence, we have

ep(x) = 0 a.e.in Q, and this concludes the proof.

Remark A.2. From the previous result, we obtain that the sequence

w(uy, v) converges to w(u, v) pointwise a.e. in Q for every fixed
v € Dy[Q]. The assumptions (2.3), (2.5) imply that the functions p(uy, v)

are uniformly integrable. Then, the sequence p(uj,v) converges to

n(u, v) strongly in I}(Q, m) for every fixed v e Dy[Q].
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