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Abstract 

We study the asymptotic behavior of the solutions to a relaxed Dirichlet problem 
associated with p-homogeneous strongly local forms, ,1>p  having a local 

-1L density and to measures ,nζ  which do not charge sets of zero capacity. We 

prove that there exists a subsequence of nζ  that -γ converges to a measure ζ  of 

the same type, and we also prove the convergence of the relative solutions in 

[ ] .1, prDr <<Ω  
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1. Introduction 

The present paper is focused on the asymptotic behavior of the 
solutions to a relaxed Dirichlet problem associated with p-homogeneous 
strongly local forms of Riemannian type. In [1], it has been proved that 
the class of relaxed Dirichlet problems associated with p-homogeneous 
strongly local forms of Riemannian type in a r.c. open set is compact with 
respect to the -γ convergence. Here, under additional assumptions, we 
prove the compactness of the class of relaxed Dirichlet problems 
associated with p-homogeneous strongly local forms of Riemannian type 

in a r.c. open set Ω  with respect to the convergence in [ ] ,1, prDr <<Ω  
(see the end of the section for the definition), and we give a sort of 
corrector for our problem. The lines of proof are a refinement, adapted to 
our framework, of the ones in [9]. We recall that the case of bilinear 
Dirichlet forms of Riemannian type has been studied in [8] under slight 
stronger assumptions. Our framework applies to the subelliptic               
p-Laplacian eventually with a weight in the intrinsic pA  Muckenhoupt’s 

class, or to the metric p-Laplacian, in the case, where the related norm (in 
the domain) defines a uniformly convex space. In the following of this 
section, we recall the basic definitions and properties relative to our 
framework. 

We consider a locally compact connected complete separable 
Hausdorff space X with a metrizable topology and a positive Radon 
measure m on X such that [ ] .supp Xm =  We observe that every bounded 
set in X is r.c.. We consider a strongly local p-homogeneous Dirichlet 

form, ( ) ( )dxvup
X

,,1 µ> ∫  as defined in [5] ( ( ) ( )).,1 uupu µ=α  We 

denote by ( ),,0 mXLD p⊂  the domain of the form endowed with the 
natural norm. The strong locality property allows us to define the domain 
of the form with respect to an open set O, denoted by [ ],0 OD  and the 
local domain of the form with respect to an open set O, denoted by 

[ ].ODloc  Associated with the form a capacity ( )OEcapp ,  can be defined 

and it can be proved that every function in 0D  is quasi-continuous and is 
defined quasi-everywhere [5]. 
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We just list the main properties of strongly local p-homogeneous 
Dirichlet forms and we refer for the proofs to [5]: 

(a) ( )vu,µ  is homogeneous of degree 1−p  in u and linear in v; we 

also have ( ) ( )., upuu α=µ  

(b) Chain rule: if 0, Dvu ∈  and ( )R1Cg ∈  with ( ) 00 =g  and g ′  

bounded on R, then ( ) ( )vgug ,  belong to ,0D  and 

( )( ) ( ) ( ) ( ).,, 2 vuugugvug p µ′′=µ −   (1.1) 

Moreover, 

( )( ) ( ) ( ).,, vuvgvgu µ′=µ   (1.2) 

Then 

  ( )( ) ( ) ( ).uugug pα′=α   (1.3) 

The assumption on the boundness of g ′  can be replaced by the 

assumption ( ).,, mXLvu ∞∈  

(c) Truncation property: for every 0, Dvu ∈  

( ) { } ( ),,, 0 vuvu u µ=µ >
+ 1   (1.4) 

( ) { } ( ),,, 0 vuvu v µ=µ >
+ 1   (1.5) 

where the above relations make sense, since u and v are defined quasi-
everywhere.  

(d) Leibniz rule with respect to the second argument: 

( ) ( ) ( ),,,, vuwwuvvwu µ+µ=µ   (1.6) 

where ( ).,,, 00 mXLDwvDu ∞∈∈ I  

(e) Leibniz inequality: let ( ),,, 0 mXLDvu ∞∈ I  then ∞∈ LDuv I0  

( ),, mX  and 
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( ) ( ( ) ( )),uvvuCuv pp α+α≤α  

where ( ).,,, 00 mXLDwvDu ∞∈∈ I  

(f) For any ( )( )uXLf p α∈ ′ ,  and ( )( )vXLg p α∈ ,  with =+ pp 11  

fg,1  is integrable with respect to ( )vu,µ  and +∈∀ Ra  

( ) ( ) ( ) ( ) ( ) ( ) ( ).22, 111 dxvgadxufadxvufg ppppppp α+α≤µ −−′−−   

(1.7) 

Assume that we are given a distance d on X, such that ( ) md ≤α  in the 
sense of the measures, and 

(i) The metric topology induced by d is equivalent to the original 
topology of X, and we also assume for sake of simplicity that 

( ) +∞=∈ yxdXy ,sup 0  (we can replace this last assumption by: let Ω  be 

the r.c. open set in consideration, there exists a point in cΩ  with positive 
distance from Ω ). 

(ii) Denoting by ( ),, rxB  the ball of center x and radius r (for the 
distance d), for every fixed compact set K, there exist positive constants 

0c  and 0r  such that 

( )( ) ( )( ) .0and,, 00 rrsKxs
rsxBmcrxBm <<<∈∀





≤

ν
  (1.8) 

We assume without loss of generality, .ν<p  

From the properties of d, it follows that for any ,Xx ∈  there exists a 
function ( ) ( )( ).,xdφ=⋅φ  such that ( )[ ] 1,10,2,0 =φ≤φ≤∈φ rxBD  on 

( )rxB ,  and ( ) ,2 m
r p≤φα  [6]. 

We also assume that the following scaled Poincaré inequality holds: 
for every fixed compact set K, there exist positive constants ,, 11 rc  and 

1≥k  such that for every Kx ∈  and every 10 rr <<  
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( )
( )

( )
( ) ( ),,

,
1,

,
dxuurcdxmuu

krxB
pp

rx
rxB

µ≤− ∫∫   (1.9) 

for every ( )[ ],, krxBDu loc∈  where ( )( ) ( )
( ).,

1
,, dxumrxBmu
rxBrx ∫=  

A strongly local p-homogeneous Dirichlet form, such that the above 
assumptions hold, is called a Riemannian Dirichlet form. 

From (1.9), we can easily deduce by standard methods that for every 
fixed r.c. set ,Ω  

( ) ( ) ( ) ( ),2 dxucdxmu p αΩ≤ ∫∫ ΩΩ
 

for every [ ],0 Ω∈ Du  where 2c  depends only on ;Ω  then ( ) ( )dxuα∫Ω  is 

an equivalent norm on [ ].0 ΩD  Moreover, the embedding of [ ]Ω0D  in 

( )mLp ,Ω  is compact. The following technical lemma will be utilized in 
Section 7. 

Proposition 1.1. For every p-quasi-open set U in the open set ,Ω  

there exists an increasing sequence of functions ( ),0 Ω∈ Dvn  which 

converges to U1  q.e. in .Ω  

Proof. Let U be quasi-open in .Ω  Then, there exists a sequence 

Ω⊂kU  with ( ) kUcap kp
1, ≤Ω  such that the sets kk UUA U=  are 

open. We can assume without loss of generality that the sequence kU  is 
decreasing. 

Therefore, for every k, there exists an increasing sequence of non-

negative functions ( ) [ ]ΩΩ∈φ ∞
0DLk

h I  with ( ) ,k
h

k
h M≤φα  converging to 

kA1  pointwise q.e. in .Ω  

Since for every k, we have ( ) ,1, kUcap kp ≤Ω  there exists 

[ ]Ω∈ 0Duk  such that q.e. 1=ku  in 10, ≤≤ kk uU  q.e. and 
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( ) ( ) kdxuk
1≤α∫Ω  (it is enough to choose ku  as the potential of kU  in 

Ω ). This implies that a subsequence of ku  converges to 0 q.e.. Moreover, 

as ,kA
k
h 1≤φ  we have ( ) Uk

k
h u 1≤−φ +  q.e. in .Ω  Let us define 

( ) .sup,max1 hhk
k
hhkh vvuv =/−φ= +

≤≤  

Then [ ] 0,0 ≥Ω∈ hh vDv  q.e. in ,Ω  moreover, the sequence hv  is 
increasing and Uv 1≤/  q.e. in .Ω  

On the other hand, for every ,kh ≥  we have ( ).k
k
hh uv −φ≥  As 

,kAU ⊂  we obtain ( )kuv −≥/ 1  q.e. in U. Taking the limit along a 
suitable subsequence, we obtain 1≥/v  q.e. in U. This shows ,Uv 1=/  
which concludes the proof. 

2. The Space of Measures ( )Ωp
0M  and the Operator 

2.1. The measures 

We denote by ( ),0 ΩpM  the set of all non-negative Borel measures ζ  

such that 

(i) ( ) 0=ζ B  for every Borel set Ω⊂B  with ( ) .0, =ΩBcapp  

(ii) ( ) { ( ) UUB ,inf ζ=ζ  quasi-open, }.UB ⊂  

Property (ii) is a weak regularity property of the measure .ζ  Since 
any quasi-open set differs from a Borel set by a set of capacity zero, then 
( )Uζ  is well defined when U is quasi-open and ζ  satisfies (i), so condition 

(ii) makes sense. The condition (ii) will be essential in the proof of the 

uniqueness of the -µγ limit. Finally, we observe that every non-negative 

Radon measure on Ω  is in the class ( ).0 ΩpM  

If ζ  is a non-negative Borel measure, then ( ) ,1,, +∞≤≤ζΩ rLr  will 

denote the usual Lebesgue space with respect to the measure .ζ  
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If ( ),0 Ω∈ζ pM  then the space [ ] ( )ζΩΩ ,0
pLD I  is well defined 

because the functions in [ ]Ω0D  are defined q.e. [5], and then -ζ almost 

everywhere in .Ω  Moreover, the space [ ] ( )ζΩΩ ,0
pLD I  is a Banach 

space for the norm 

[ ] ( ) [ ] ( )
.

,, 00

p
L

p
D

p
LD pp uuu

ζΩΩζΩΩ
+=

I
 

A non-negative Borel measure, which is finite on compact sets of Ω  is a 
non-negative Radon measure on .Ω  We say that a Radon measure σ  

belongs to [ ],1 Ω−D  ( where [ ] ( [ ]) )′Ω=Ω−
0

1 DD  if there exists [ ]Ω∈ −1Df  

such that 

,, σϕ>=ϕ< ∫Ω df   (2.1) 

for every [ ] ( ),00 ΩΩ∈ϕ CD I  where >⋅⋅< ,  denotes the pairing between 

[ ]Ω−1D  and [ ].0 ΩD  We identify σ  and f. We observe that for every non-

negative [ ],1 Ω∈ −Df  there exists a non-negative Radon measure σ  such 

that (2.1) holds. The proof is analogous to the one for distributions in 
euclidean spaces and is founded on the density of [ ] ( )ΩΩ 00 CD I  both in 

[ ]Ω0D  and in ( )Ω0C  for the uniform convergence. Moreover, every non-

negative Radon measure in [ ]Ω−1D  belongs to ( ).0 ΩpM  

2.2. Properties of the energy density of the form 

We will assume that, for any ,0Du ∈  the Radon measure ( )uα  has a 

density in ( ),,1 mXL  denoted again by ( ) ( ).xuα  By (1.7), we obtain that 

for any ,, 0Dvu ∈  the Radon measure ( )vu,µ  has a density in ( ),,1 mXL  

denoted again by ( ) ( )., xvuµ  

We also assume that there exist some constants 0, 10 >CC  such that 

for any 021 ,, Dvuu ∈  
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( ) ( ) ( ),,, 210212211 uuCuuuuuu −α≥−µ−−µ   (2.2) 

( ) ( )vuvu ,, 21 µ−µ   (2.3) 

( ) ( ) ( ) ( ) ,
1111

21
2

211 pppp vuuuuC
p

α−α⋅




 α+α≤

−
 

a.e., if ,2≥p  and 

( ) ( )212211 ,, uuuuuu −µ−−µ   (2.4) 

( ) ( ) ( ) ,
211

21
2

210 ppp uuuuC
p

−α⋅




 α+α≥

−
 

( ) ( ) ( ) ( ) ,,,
11

21121 pp
p

vuuCvuvu α−α≤µ−µ
−

  (2.5) 

a.e., if .21 << p  We also assume 

( ) ( ) ( ) ( ) ,,,
11

1
1

22121
2

1 pp
p

vuuCvuuvuuu pp αα≤µ−µ
−−−   (2.6) 

for any ( ).,,,,, 21021 mXLuuDvuu ∞∈∈  

The above conditions hold in the case where ( ) ( ) ,1
p

i
m
i uLu ∑ =

=α  

where ( )mXLDL p
i ,: 0 →  are linear bounded continuous operator, then 

in a framework similar to the one used in [1] in the bilinear case. In 
particular, our results can be applied to the case of the weighted 
subelliptic p-Laplacian, where the weight is in the corresponding intrinsic 

pA  Muckenhoupt’s class (see [4] for the case without weight). Finally, the 

above assumptions hold for the p-Laplacian in finite dimensional metric 
structures of Cheeger type. 

3. Relaxed Dirichlet Problems 

Let Ω  be a r.c. open set in ( ) [ ] [ ] IΩ∈/Ω∈Ω∈ζ − DvDfX p ,,, 1
0M  

( ),, ζΩpL  where [ ] { [ ] ( ) ( ) }.; +∞<αΩ∈=Ω ∫Ω dxmvDvD loc  We also 

denote by [ ] ,1, prDr <<Ω  the closure of [ ]ΩD  for the convergence 
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defined as nu  converges to u in [ ],ΩrD  if nu  converges to u in ( )mLr ,Ω  

and ( ) puun
1

−α∫ω  converges to 0 in ( )., mLr Ω  We consider the following 

relaxed Dirichlet problem 

( ) ( ) ( ) >=<ζ+µ −

ΩΩ ∫∫ vfdxuvudxmvu p ,, 2   (3.1) 

( ) ( ) ( ) ( ),,, 0 Ω∈/−ζΩΩ∈ DvuLDu pI  for every ( ) ( ).,0 ζΩΩ∈ pLDv I  

The problem (3.1) has a unique solution (see Theorem 4.1). We are 
interested in particular to the case ,0=/v  i.e., [ ],0 Ω∈ Du  in this case we 

refer to this problem as (3.10). In this paper we study the asymptotic 
behavior of relaxed Dirichlet problems (3.10) related to a sequence of 

measures ( ).0 Ω∈ζ p
n M  

Let nζ  be a sequence in ( )Ωp
0M  and ( ).0 Ω∈ζ pM  Let [ ].1 Ω∈ −Df  

Let nuu,  be the solutions of the problems 

( ) ( ) ( ) >=<ζ+µ −

ΩΩ ∫∫ vfdxuvudxmvu p ,, 2   (3.2) 

[ ] ( ) [ ] ( ).,,, 00 n
p

n
p LDvLDu ζΩΩ∈∀ζΩΩ∈ II  

( ) ( ) ( ) >=<ζ+µ −

ΩΩ ∫∫ vfdxvuudxmvu nn
p

nn ,, 2   (3.2n) 

[ ] ( ) [ ] ( ).,,, 00 ζΩΩ∈∀ζΩΩ∈ pp
n LDvLDu II  Let nww,  be respectively, 

the solutions of (3.2), (3.2n) with .1=f  In Theorem 7.3, we prove that the 

following two assertions are equivalent. 

(a) For every ( ) nuDf Ω∈ −1  converges to u weakly in ( )Ω0D  (We say 

in this case that -µγζn converges to ζ  in ( )).0 ΩpM  

(b) nw  converges to w weakly in ( ).0 ΩD  
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We also prove that, if (a) holds, then the sequence nu  converges to u 

in [ ],ΩrD  for all .1 pr <<  We observe that in Theorem 4.15, we also 
give a sort of correctors in [ ]Ω0D  for our problems. Theorem 7.5 is 
consequence of some compactness results, which are interesting in 
themselves proved in Section 7. In particular, we prove the compactness 
of the set of the solutions w of (3.2) with ,1=f  when ( ).0 Ω∈ζ pM  

Theorems 7.3 and 7.5 are proved in Section 7. The previous sections 
contain many auxiliary results relative to the solutions of (3.2) and (3.2n). 
In particular, in Section 5, we prove some estimates for the solutions of 
(3.2) and establish some comparison principles. The asymptotic behavior 
of certain sequences defined by the solutions of (3.2) and (3.2n) are 
considered in Sections 5 and 6. Section 7 is devoted to prove the 
compactness results. The case of the Dirichlet problems in perforated 
domains is of particular interest. For every open set Ω⊂U  and every 
Borel set ,Ω⊂B  we define the non-negative Borel measure Uζ  as 
follows: 

 (j) ( ) ,0=ζ BU  if ( ) ;0, =Ωc
p UBcap I  

(jj) ( ) ,+∞=ζ BU  otherwise. 

Let nΩ  be an arbitrary sequence of open subset with closure 

contained in .Ω  Let [ ]Ω∈ −1Df  and denote by nu  the solutions to the 
problem 

( ) ( ) ,,, n
n

vfdxmvun Ω
Ω

>=<µ∫  

( ),0 nn Du Ω∈  for every [ ]nDv Ω∈ 0  extended by 0 to .nΩ  Let us observe 
that the above equation is equivalent to the relaxed Dirichlet problem 
associated to the sequence of measures .nn Ωζ=ζ  From Theorem 7.5, we 

have that there exists a subsequence of ,nΩ  still denoted by ,nΩ  and a 

measure ( )Ω∈ζ p
0M  such that for every [ ],1 Ω∈ −Df  the functions nu  

extended by 0 to ,Ω  converges weakly in [ ]Ω0D  to the solution of the 
relaxed Dirichlet problem (3.2) relative to f and to the measure .ζ  
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4. Preliminaries Results 

4.1. Estimates for the solutions of the relaxed problems 

Proposition 4.1. Let ( ) [ ] ( ).,,0 ζΩΩ∈/Ω∈ζ pp LDv IM  The problem 

(3.1) has a unique solution. Moreover, the solution satisfies the estimate 

( ) ( ) ( )dxudxu pζ+α ∫∫ ΩΩ
  (4.1) 

( )
( ) ( ) ( ) ,1 








ζ/+/α+≤ ∫∫ ΩΩΩ− dxvdxmvf pq

D
 

where C is a structural constant. 

Proof. Let ( ) ( )dx⋅⋅σ∫Ω ,  be the form defined as 

( ) ( ) ( ) ( ) ( ) ( ),,, 2 dxvvzvzdxmvvzdxvz p ζ/+/++/+µ=σ −

ΩΩΩ ∫∫∫  

where [ ] ( ).,, 0 ζΩΩ∈ pLDvz I  From (2.2), …, (2.5), the problem 

( ) ( ) [ ] [ ] ,,, , ΩΩ′
Ω

>=<σ∫ DDvfdxvz  

[ ] ( ) [ ] ( ),,,, 00 ζΩΩ∈∀ζΩΩ∈ pp LDvLDz II  admits a unique solution 

z. Then, vzu /+=  is the solution of the problem (3.1). Let us take 

( )vuv /−=  as test function in (3.1); we obtain 

( ) ( ) ( ) ( ) .,, 2 >/−=<ζ/−+/−µ −

ΩΩ ∫∫ vufdxvuuudxmvuu p  

Then, using the Young’s inequality, we obtain (4.1). 

The “uniform” continuous dependence of f on the solutions of (3.1) is 
given by the following theorem. 
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Proposition 4.2. Let ( ) [ ] ( ).,, 210 ΩΩ∈Ω∈ζ ζ
pp LDuu IM  Let D∈ϕ  

[ ] ( ) 0,, ≥ϕΩΩ ∞ mLI  q.e. in .Ω  If  ,2 ∞<≤ p  

( ) ( ) ( )dxuudxmuuC pp ϕζ−+−ϕα ∫∫ Ω

−

Ω
21

2
21 2  

( ( ) ( )) ( )dxmuuuuuu 212211 ,, −µ−−µϕ≤ ∫Ω  

( )( ) ( ).212
2

21
2

1 dxuuuuuu pp ϕζ−−+ −−

Ω∫  

If ,21 << p  

( ) ( )
p

dxmuuC
2

21 






 −ϕα∫Ω  

( ) ( ( ) ( )) ( ),,,,, 212211211 dxmuuuuuuuuK −µ−−µϕϕ≤ ∫Ω  

( )
p

p dxuuC
2

21 






 ϕζ−∫Ω  

( ) ( ) ( ) ( ),,, 212
2

21
2

1212 dxuuuuuuuuK pp ϕζ−−ϕ≤ −−

Ω∫  

where ( ) ( ( ) ( ) ( ) ( )) ( )ϕϕα+ϕα=ϕ
−

∫∫ ΩΩ
,,,2,, 21221211

2
uuKdxmudxmuuuK p

p
 

( ( ) ( )) .2
2

21 p
p

dxudxu pp −
ϕζ+ϕζ= ∫∫ ΩΩ

 

Proof. The proof is the same of [4] and is founded on (2.2) ,..., (2.5). 

Proposition 4.3. Let ( );0 Ω∈ζ pM  let [ ],, 1
21 Ω∈ −Dff  and let 21, uu  

be the solutions of (3.1) corresponding to 1f  and ,2f  respectively. If ,2≥p  

then 

[ ] ( ) [ ]
.10 21,2121

q
D

p
L

p
D ffCuuuu p ΩζΩΩ −−≤−+−  (4.2) 
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If ,21 << p  then 

[ ] ( )
( )

[ ]
,,, 2

2121
2

,21
2

21 10 ΩζΩΩ −−/Γ≤−+−
DLD ffvffCuuuu p  (4.3) 

where C is a structural constant, and 

( )
( ) [ ]

( ) ( ) ( )
( )

.,,
22

11 2121
p

p

dxvdxmvffvff pq
D

q
D

−

−− 






 ζ/+/α++=/Γ ∫∫ ΩΩΩΩ
 

The proof follows as in [9] taking into account the assumptions (2.2), …, 
(2.5). 

4.2. Comparison principles 

Proposition 4.4. Let ( );0 Ω∈ζ pM  let [ ]Ω∈ −1Df  and let u be the 

solution of (3.2). If 0≥f  in ,Ω  then 0≥u  q.e. in .Ω  

Proof. The results follow by using 0uv =  as test function in (3.2). 

Proposition 4.5. Let 0w  be the solution of the problem 

( ) ( ) ( ),,0 dxvmdxmvw ∫∫ ΩΩ
=µ  (4.4) 

[ ],00 Ω∈ Dw  for every [ ].0 Ω∈ Dv  Then 00 >w  q.e. in .Ω  

Proof. The function 0w  is a non-negative superharmonic in Ω  for 

the form ,µ  that is, 00 ≥w  and ( ) ( ) ,0,0 ≥µ∫Ω dxmvw  for every 0Dv ∈  

[ ] .0, ≥Ω v  Then ( ) ,0,0 >+ w  satisfies an 2A  Muckenhoupt’s 
condition in every ball B such that Ω⊂B2  with a constant independent 

of   [6]. The result follows from [6], since ( ) 1
00

−+= wv  is non-negative 
and subharmonic in Ω  for the form .µ  

Proposition 4.6. Let ( );, 021 Ω∈ζζ pM  let [ ],, 1
21 Ω∈ −Dff  and let 

21, uu  be the respective solutions of (3.2). If 20 f≤  and 12 ζ≤ζ  in ,Ω  
then 21 uu ≤  q.e. in .Ω  
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Proof. By Proposition 4.4, we have 02 ≥u  q.e. in .Ω  Let =v  

( ) .21
+− uu  Since +≤≤ 10 uv  and ,12 ζ≤ζ  we have ( ) pp LLv ⊂ζΩ∈ 1,  

( )., 2ζΩ  Then we can use v as test function in both the relaxed Dirichlet 

problems, and we obtain ( ) ,0=α v  so 21 uu ≤  q.e. in .Ω  

Proposition 4.7. Let ( )Ω∈ζζ p
021, M  and [ ],, 1

21 Ω∈ −Dff  and let 

21, uu  be the respective solutions of (3.2). If 21 ff ≤  and 12 ζ≤ζ  in ,Ω  

then 21 uu ≤  q.e. in .Ω  

Proof. By Proposition 4.6, we have 21 uu ≤  q.e. in .Ω  We observe 

that the function 1u−  is the solution of (3.2) corresponding to 1f−  and .1ζ  

So by Proposition 4.6, we also have 21 uu ≤−  q.e. in .Ω  

Remark 4.8. Let ( )Ω∈ζ p
0M  and let nu  and nw  be the solutions of 

the problem (3.2n) relative to, ( )Ω∈ ∞Lf  and to .1=f  From the 

Proposition 4.1, the sequences nu  and nw  are bounded in [ ].0 ΩD  Then, 

there are subsequences still denoted by nu  and ,nw  and two functions 

[ ]Ω∈ 0, Dwu  such that nu  and nw  converge weakly in [ ]Ω0D  and a.e. in 

Ω  to u and w. Let 
( )
( ) .11

,
−
Ω∞= p

mL
fC  From (3.10), we have 

( ) ( ) ( )
( )

( ),, 2 dxvmf
fdxvC

u
C
udxmvC

u
L

n
npnn

ΩΩ

−

ΩΩ ∞∫∫∫ =ζ+µ  

for every [ ] ( ).,0 n
pLDv ζΩΩ∈ I  Proposition 4.6 gives n

n wC
u

≤  q.e. in 

.Ω  Let 0w  be the solution of (4.4). In virtue of the Proposition 4.6, we 

have 0wwn ≤  q.e. in .Ω  Then 0CwCwu nn ≤≤  q.e. in .Ω  Hence 

≤u  0CwCw ≤  a.e. in .Ω  As ( ),,0 mLw Ω∈ ∞  the sequences nu  and 

nw  are bounded in ( )., mL Ω∞  
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4.3. Estimates involving auxiliary Radon measures 

Proposition 4.9. Let ( );0 Ω∈ζ pM  let ( ) ,1,,
−

=Ω∈ p
pqmLf q  and 

let u be the solution of (3.1) for some [ ] ( )., ζΩΩ∈/ pLDv I  Let 21,, λλλ  be 

elements of [ ]Ω−1D  defined by ( ) ( ) ( ) ,,, >λ<+=µ ∫∫ ΩΩ
vdxfvmdxmvu  

( ) ( ) ( ) ( ) ( ) ( ) +=µ>λ<+=µ −
Ω

−
Ω

+
Ω

+
Ω ∫∫∫∫ dxvmfdxmvuvdxvmfdxmvu ,,,, 1

 [ ].,, 02 Ω∈∀>λ< Dvv  Then 21,, λλλ  are Radon measures, ,0, 21 ≥λλ  
., 2121 λ+λ≤λλ−λ=λ  Moreover, for every compact set ,Ω⊂K  we 

have 

( ) ( ) ( ) ( )[ ]., ,
11

0 mL
p
D

p
p qfuKcapCK Ω

−
Ω +Ω≤λ  (4.5) 

Proof. Let [ ] 0,0 ≥Ω∈ vDv  q.e. in Ω  and let ( ) .+= un
vvn   Then 

0≥nv  q.e. in [ ] ( ).,, 0 ζΩΩ∈Ω p
n LDv I  As 02 ≥−

n
p uvu  q.e. in ,Ω  

and nn vffv +≤  a.e. in ,Ω  taking nv  as test function in (3.1), we obtain 
( 0=nv  if )0≤u  

( ) ( ) ( ) ( ),1, dxvmfndxmvfdxmvu nn
+

Ω

+

Ω

+

Ω ∫∫∫ ≤≤µ  

where we use the truncation rule. Since by the truncation rule ( )nvu ,+µ  

( )vun ,1 +µ=  in { }+< nuv  and ( ) ( )+++ µ=µ uuvu n ,,  in { },+≥ nuv  we 

obtain 

{ }
( ) ( )

{ }
( ) ( ) ( ).11,1 dxvmfndxmundxmvun nuvnuv

+

Ω

+

≥

+

< ∫∫∫ ≤α+µ
++

 

Taking the limit as ,+∞→n  we obtain 

( ) ( )
{ }

( ) ( ) ( ),,,
0

dxvmfdxmvudxmvu
u

+

Ω>

+

Ω ∫∫∫ ≤µ=µ
+

 

for every [ ] 0,0 ≥Ω∈ vDv  q.e. in .Ω  This implies ,0,1 ≥>λ< v  so, 

since [ ] 11 , λΩ′∈λ D  is a non-negative Radon measure. 
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In a similar way, we also deduce that 2λ  is a non-negative Radon 

measure, hence 21 λ−λ=λ  is also a Radon measure and .21 λ+λ≤λ  

We prove (4.5) in the case ;21 << p  the proof in the case 2≥p  is 

similar. To prove (4.5) for every ,0>  we fix a function [ ]Ω∈ 0Dz  such 

that 0≥z  q.e. in 1, ≥Ω z  q.e. in a neighborhood of K and [ ] ≤Ω
p
Dz

0
 

( ) ., +ΩKcapp  

( ) ( ) ( )KKK 21 λ−λ=λ  

 ( ) ( ) ( ) ( )dxmzudxmzu ,, −

Ω

+

Ω
µ−µ= ∫∫  

( ) ( )dxzmfdxzmf −

Ω

+

Ω ∫∫ −+  

( ) ( ) ( ) [ ] [ ]ΩΩΩ
−

−
+αα≤ ∫ 0

1
11

DD zfCdxmuzC p
p

p  

[ ] [ ] [ ] [ ]ΩΩ
−
ΩΩ −+≤

0
1

00
1

DD
p
DD zfCuzC  

( ( ) ) [ ] ( )[ ]., ,
11

0 mL
p
D

p
p qfuKcapC Ω

−
Ω ++Ω≤   

Taking the limit as ,0→  we obtain (4.5). 

Remark 4.10. Under the assumptions of Proposition 4.9, if ,0, ≥/vf  

then += uu  and .1λ=λ  Therefore, in this case, .0≥λ  Hence, 

( )vu,µ∫Ω  ( )dxfvm∫Ω≤  for every 0≥v  in [ ].0 ΩD  

Proposition 4.11. Let ng  be a sequence in [ ],1 Ω−D  let nλ  be a 

sequence of Radon measures and let [ ]Ω∈ Dun  be such that 

( ) ( ) [ ] [ ] ( ),,, 0, dxvvgdxmvu nDDnn λ+>=<µ ∫∫ Ω
ΩΩ′

Ω
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for every [ ] ( ).00 ΩΩ∈ CDv I  Assume that un converges weakly in [ ]ΩD  to 

some function ngu,  converges in [ ]Ω−1D  and nλ  is bounded in the space 

of Radon measures (i.e., for every compact set ,Ω⊂K  there exists a 
constant KC  such that ( ) Kn CK ≤λ ). Then, for nupr ,1 <<  converges 

to u in [ ];ΩrD  moreover, ( ) ( )dxmvun ,µ∫Ω  converges to ( ) ( )dxmvu,µ∫Ω  

for every [ ].0 Ω∈ Dv  

The proof of this result is given in the Appendix. 

Proposition 4.12. Let ng  be a sequence in [ ],1 Ω−D  which converges 

to some [ ],1 Ω∈ −Dg  let nζ  be a sequence in ( ),0 ΩpM  and let nv/  be a 

sequence bounded in [ ] ( )mLD p ,ΩΩ I  such that ( ) .Mdxv n
p

n ≤ζ/∫Ω  

Assume that the solution nu  of (3.1) corresponding to ,, nn gf =ζ=ζ  

nvv /=/  converges weakly in [ ]ΩD  to some function u. Then, for ,1 pr <<  

nu  converges to u in [ ];ΩrD  moreover, ( ) ( )dxmvun ,µ∫Ω  converges to 

( ) ( )dxmvu,µ∫Ω  for every [ ].0 Ω∈ Dv  

Proof. Let ( ) ( );1,
−

=Ω∈ p
pqmLg q  then from Propositions 4.10 

and 4.11, the result follows. In the general case, the result is proved by an 

approximation of g by a function f in ( )mLq ,Ω  by using the Proposition 

4.3. 

Proposition 4.13. Let ( )Ω∈ζ p
n 0M  be a sequence of measures. Let 

nu  and nw  be the solutions of the problem (3.2n) relative to ( )Ω∈ ∞Lf  

and .1=f  Assume that nu  and nw  converge weakly in [ ]Ω0D  to some 

functions u and w. For every ,0>  the functions 
w

uwn  belong to [ ]Ω0D  

( ),, n
pL ζΩI  and one has 
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( ) ( ) ,0lim =







ζ−+






 −α ∫∫+∞→ dxw

uwudxmw
uwu n

pn
n

U
n

n
U

n  
 (4.6) 

where { } { }.wuwU  >>= I  

Proof. For 0>  denote 

., 
 nnn
n

n uurw
uwu −==  

First step. We observe that the functions nu  and nw  (u and w) are 

bounded in ( )mL ,Ω∞  (Remark 4.10) and converge to u and w weakly in 

[ ]Ω0D  and strongly in ( )., mLp Ω  The functions 
nu  and nr  are bounded 

in ( )Ω∞L  (as ( )mLf ,Ω∈ ∞  (Remark 4.10) and converge to 
w

uw  and 

w
uwu −  weakly in [ ]Ω0D  and strongly in ( )., mLp Ω  Moreover, from 

Proposition 4.12, ( ) ( ( ) )pp w
uwuuu nn

11


 −α−α  converges to 0 in ( ),ΩrL  

pr <≤1  as .+∞→n  

We recall that [ ] ( ) ( ) ( ),,,,0 ζΩ⊂ζΩΩΩ ∞∞ LLmLD pII  for every 

( ).0 Ω∈ζ pM  Moreover, we have ( ),, n
p

n Lu ζΩ∈  then ( ,, Ω∈ p
nn Lru   

).nζ  As 0=−
w

uwu  a.e. in ,U  we obtain that 
nr  converges to 0 

strongly in ( )mULp ,  as .+∞→n  

Consider now a Lipschitz function Φ  defined by ( ) 0=Φ t  for ,≤t  

( ) 1−=Φ

tt  for ( ) 1,2 =Φ≤≤ tt   for .2≥t  We define ( )  ΦΦ=φ w  

( ).
w

u  We have [ ] ( ) 10,,0 ≤φ≤ΩΩ∈φ ∞ mLD I  q.e. in 1, =φΩ  in 

0,2 =φU  in .\ UΩ  

By the previous remarks by using the Leibniz inequality, the 

sequence φnr  converges to 0 weakly in [ ]Ω0D  and strongly in ( )., mLp Ω  
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Second step. We define 

( ( ) ( )) ( )dxmruruE nnnnn
 ,, µ−µφ= ∫Ω  

( ) ( ).22 dxuuuur nn
p

nn
p

nn ζ−φ+ −−

Ω∫
  

In this step, we prove that for   fixed, we have 

.0lim =+∞→

nn E  

We write 
nE  as 

( ( ) ( )) ( )dxmruruE nnnnn
 φµ−φµ= ∫Ω ,,  (4.7) 

( ) ( )dxuuuur nn
p

nn
p

nn ζ−φ+ −−

Ω∫
 22  

( ( ) ( )) ( )dxmuur nnn
U

φµ−φµ− ∫ ,, 


 

( ) ( ) ( )dxuurdxmru nn
p

nnnn ζφ+φµ= −

ΩΩ ∫∫ 2,   

( ) ( ) ( )dxuurdxmrww
u

w
u

nn
p

nnnn
p ζφ−φµ− −

Ω

−

Ω ∫∫ 


22 ,  

( ) ( ) ( )dxmrurww
u

w
u

nnnn
p

U






 φ−φµ+ −∫ 


,,2  

( ( ) ( )) ( ).,, dxmuur nnn
U

φµ−φµ− ∫ 


 

We have ≤w  in ,\ UΩ  then ( ) 0=Φ w  and so 0=φ  q.e. in .\ UΩ  

Then the function [ ] ( ).,0
2 mLDw

u
w

u p ΩΩ∈φ ∞− I


 We have 

( ) ( )dxmrww
u

w
u

nn
p 


φµ− −

Ω∫ ,2  



MARCO BIROLI and SILVANA MARCHI 58

( ) ( )dxmrw
u

w
uw n

p
n



φµ−= −

Ω∫
2,  

( ) ( ) ( ).,1 2 dxmw
uwrw

up nn
p


µφ−+ −

Ω∫  

Then, taking as test function 
 n

p rw
u

w
uv φ= −2  in the equation 

defining ,nw  we obtain ( 0=φ  and ( ) 0=φα  in )U\Ω  

( ) ( ) ( )dxuurdxmrw
u

w
uw nn

p
nnn

p
n ζφ−φµ− −

Ω

−

Ω ∫∫ 


22,  

( ).2 dxmrw
u

w
u

n
p

U



φ−= −∫  

Taking 
nrv φ=  as test function in the equation defining ,nu  we obtain 

(taking into account that 0=φ  and ( ) 0=φα  in U\Ω ). 

( ) ( )dxmrw
u

w
udxmrfE n

p
U

n
U

n



φ−φ= −∫∫ 2  

( ) ( ) ( )dxmw
uwrw

up nn
p

U 



,1 2 µφ−+ −∫  

( ) ( ) ( )dxmrurww
u

w
u

nnnn
p

U






 φµ−φµ+ −∫ 


,,2  

( ( ) ( )) ( )dxmuur nnn
U

φµ−φµ− ∫ ,, 


 

.54321
nnnnn IIIII −+++=  

Let us recall that since nr  is bounded in [ ],0 ΩD  it converges strongly to 0 

in ( ),, mULp
  then a.e. in .U  Moreover, 

nu  and 
w

u  are bounded in 

[ ]Ω0D  and 
w

u  is bounded in ( )., mL Ω∞  
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It follows that 5321 ,,, nnnn IIII  converge to 0. The Young’s inequality 

gives the result about 1
nI  and .2

nI  Concerning ,3
nI  we recall that 

( )
w

uwn ,µ  converges in ( )mL ,1 Ω  (see Remark A.2) and the result 

easily follows. Concerning ,5
nI  the method of the proof is the same, since 

( )φµ ,nu  and ( )φµ ,nu  converge in ( )mL ,1 Ω  (see the Appendix). 

Concerning ,4
nI  the result follows as in [9], taking into account (2.6). 

Third step. If ,2≥p  the Theorem 4.2 gives 

( ) ( ) ( ) ,22 
nn

p
n

p
n Edxrdxmr ≤φζ+φα ∫∫ Ω

−

Ω
 (4.8) 

and the proposition follows by Step 2. If ,21 << p  we observe that the 
sequences ( )n

pLnu ζΩ,  and ( )n
pLnw ζΩ,  are bounded by Theorem 4.1. 

Since u and 
w

1  belong to [ ] ( ),,0 mLD ΩΩ ∞I  we conclude that 

( )n
pLnu ζΩ,

  and ( )n
pLnr ζΩ,

  are bounded too. By Theorem 4.2, there 

exists a constant K such that 

( ) ( ) ( ) ( ) .2 22 p
nn

p
n

p
n KEdxrdxmr  ≤φζ+φα ∫∫ Ω

−

Ω
 (4.9) 

Taking (4.8) and (4.9) into account, we obtain from the Step 2 that for 
every ,1>p  

( ) ( ) ( ) .02lim
22

2 =







ζ+α ∫∫ −

+∞→ dxrdxmr n
p

n
U

p
n

U
n




 (4.10) 

As  ww =2  q.e. in ,2U  we have 



2w

uwur n
nn −=  q.e. in .2U  

Therefore, (4.10) implies (4.6) with   replaced by .2  

Proposition 4.14. Let ( ),, mLf Ω∈ ∞  let ,,, uwu nn  and w be as in 

Proposition 4.13. For every ,0>  define { }. ≤= wV  Then 

( ) ( ) ( ) .0limlim 0 =







ζ+α ∫∫+∞→→ dxudxmu n

p
n

V
n

V
n


  (4.11) 
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Proof. For every ,0>  let Φ  be the Lipschitz function defined at 

the end of the first step of Proposition 4.12, and let [ ] ∞Ω∈ LDz I0
  

( )m,Ω  be the function defined by ( ).1 wz 
 Φ−=  As 1≥z  q.e. in Ω  

and 1=z  q.e. in V  by (3.2n), we have 

( ) ( ) ( )dxudxmu n
p

n
V

n
V

ζ+α ∫∫


 

( ) ( ) ( )dxzudxmuz n
p

n
V

n ζ+α≤ ∫∫Ω



 

( ) ( ) ( ) ( ) ( )dxmzuudxzudxmzuu nnn
p

nnn
 ,, µ−ζ+µ= ∫∫∫ ΩΩΩ

 

( ) ( ) ( )., dxmzuudxmzfu nnn
 µ−= ∫∫ ΩΩ

 

Let us observe that nu  converges strongly to u in ( ),, mLp Ω  and then 

a.e. in Ω  and it is bounded in ( )., mL Ω∞  Moreover, ( ) ( ) zuzun ,, µ→µ  

in ( )mL ,1 Ω  (see Remark A.2). Then ( ) ( ) ( )mzuudxmzuu nn
 ,, µ→µ ∫∫ ΩΩ

 

( ).dx  Finally, we obtain 

( ) ( ) ( )







ζ+α ∫∫+∞→ dxudxmu n

p
n

V
n

V
n


lim   (4.12) 

( ) ( ) ( )., dxmzuudxmfuz  µ−≤ ∫∫ ΩΩ
 

Let us observe that z  is bounded in ( )mL ,Ω∞  and converges to the 

characteristic function of the set { }0=u  as .0→  Then uz  converges 

to 0 strongly in ( )., mLp Ω  Let us observe that { },20psup  <<= wz  
then 

( ) ( ) .0lim 0 =α∫Ω→ dxmzu p 
  

Taking the limit 0→  in (4.12), we obtain (4.11). 
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Proposition 4.15. Let ( ),, mLf Ω∈ ∞  let ,,, uwu nn  and w be as in 

Proposition 4.13. For every ,0>  define { } { }.wuwW  ≤>= I  Then 

( ) ( ) ( ) .0limlim 0 =







ζ+α ∫∫+∞→→ dxudxmu n

p
n

W
n

W
n


   (4.13) 

Proof. For every ,0>  let Φ  be the Lipschitz function defined at 

the end of the first step of Proposition 4.13. As [ ] ( ),,0 mLDw
u ΩΩ∈ ∞I


 

the function 





Φ−=




w
uz 1  belongs to [ ] ( )., mLD ΩΩ ∞I  Since 0≥z  

q.e. in Ω  and 1=z  on ,W  by the same computations as in Proposition 

4.13, we obtain 

( ) ( ) ( )







ζ+α ∫∫+∞→ dxudxmu n

p
n

W
n

W
n


lim   (4.14) 

( ) ( ) ( )., dxmzuudxmfuz  µ−≤ ∫∫ ΩΩ
 

Let us observe that z  is bounded in ( )mL ,Ω∞  and converges to the 

characteristic function of the set { }.0=u  Then uz  converges to 0 strongly 

in ( )., mLp Ω  Moreover, { ( )}.20psup  wuz <<⊂  We can now end 

the proof by the same computations as in Proposition 4.14. 

From Propositions 4.13, 4.14, and 4.15, it follows: 

Theorem 4.15. Let ( )Ω∈ζ p
n 0M  be a sequence of measures. Let ,nu  

,, uwn  and w be as in Proposition 4.13. Assume that nu  and nw  converge 

weakly in [ ]Ω0D  to some functions u and w. We have 

( ) ( ) .0limlim 0 =







ζ−+






 −α ∫∫ ΩΩ

+∞→→ dxw
uwudxmw

uwu n
pn

n
n

nn   

The function 
w

uwn  defines a corrector in [ ]Ω0D  for our problem. 
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5. Asymptotic Behavior of Certain Sequences 

Let ( )Ω∈ζ p
n 0M  and ( )., mLf Ω∈ ∞  Assume that nu  and nw  are 

the solutions of the problem (3.2n) relative to f and ,1=f  and that nu  

and nw  converge weakly in [ ]Ω0D  to some functions u and w. In this 

section, we will study the behavior of the following sequences 

( ) ( ),,, 2 ϕµ−ϕµ β−β
n

p
nnn ww

u
w

uwwu


 (5.1) 

( ) ( ),122 dxww
u

w
udxwuu n

p
n

p
nnn

p
n ϕζ−ϕζ β+−−

Ω

β−

Ω ∫∫ 
 (5.2) 

where ( ) 11 −≥β p  and [ ] ( ).,0 mLD ΩΩ∈ϕ ∞I  The estimates will be 

useful in the proofs in the following sections of the paper. For ,21 << p  

the function 
 w

u
w

u p 2−  does not belong to [ ],0 ΩD  then the formula 

(5.1) and (5.2) are not correct. We introduce the locally Lipschitz function 
( )tΨ  defined by: 

( ) ( ) ,if,if 22   ≤=Ψ>=Ψ −− ttttttt pp   (5.3) 

and we replace in (5.1), (5.2) 
 w

u
w

u p 2−  by ( ).
 w

uΨ  We begin 

with an estimate in { } { }.wuwU  >>= I  

Lemma 5.1. Let 0>  and 1≥β  and define ( ) 0Dw
uv ∈Ψ=
  

[ ] ( )., mL ΩΩ ∞I  Then the sequence ( ) ( )ββ µ−µ nnnn wvwwu ,,  converges 

weakly in ( )mUL ,1
  as +∞→n  to the function ( ) ( ).,, ββ µ−µ wvwwu   

Proof. Since w
u

w
uv p 2−=  a.e. in ,U  we have 

( ) ( )ββ µ−µ nnnn wvwwu ,,  (5.4) 
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( ( ) ( ))nnnnn www
uwuw ,,1 µ−µβ= −β  

( ( ) ( )) ( )vwwwww
u

w
uwww

uw nnnn
p

nnn ,,, 21 µ−µ−µβ+ β−−β  

nnn CBA ++=:  a.e. in .U  In a similar way, we obtain 

( ) ( )ββ µ−µ wvwwu ,,   (5.5) 

( ( ) ( )) ( )vwwwww
u

w
uwuw p ,,, 21 µ−µ−µβ= β−−β  

CBA ++=:  a.e. in .U  Concerning ,AAn −  we have from the results 

in Section 5 that 

( ( ) ( )) 0,,lim =µ−µ+∞→ nnnnn www
uwu  

in ( ).,1 mL Ω  Then, since the sequence nw  is bounded in ( )mL ,Ω∞  and 

converges in ( ) n
p AmL ,,Ω  converges to A weakly in ( ).,1 mL Ω  

Concerning ,BBn −  we have that nB  converges to B a.e. (see Theorem 

A.1). From (2.6), the sequence nB  is also uniformly integrable; then nB  

converges to B in ( ).,1 mL Ω  Concerning ,CCn −  we have that nC  

converges to C a.e. (see Theorem A.1) and the sequence nC  is uniformly 

integrable; then nC  converges to C in ( )mL ,1 Ω  and the result follows. 

Lemma 5.2. Let 0>  and 1≥β  and define ( ) [ ]Ω∈Ψ= 0Dw
uv
  

( )., mL Ω∞I  Then for every [ ] ( ),,0 mLD ΩΩ∈ϕ ∞I  we have 

( ) ( ) ( ) ( )dxmwvwdxmwu nnnn ϕµ−ϕµ β

Ω

β

Ω ∫∫ ,,  

( ) ( ) ( ) ( ) ,,, 
 nRdxmwvwdxmwu +ϕµ−ϕµ= β

Ω

β

Ω ∫∫  

where .0suplimlim 0 =+∞→→


 nn R  
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Proof. For every ,0>  we have 

( ) ( ) ( ) ( ) ,,, 
 nnnnnnn CBAdxmwvwdxmwu ++=ϕµ−ϕµ β

Ω

β

Ω ∫∫  

where 

( ) ( ) ( ) ( );,, dxwvwdxwuA nn
U

nn
U

n
ββ ϕµ−ϕµ= ∫∫ 




 

( ) ( ) ( ) ( );,, dxwvwdxwuB nn
WV

nn
WV

n
ββ ϕµ−ϕµ= ∫∫ 



 UU
 

( ) ( ) ( ) ( ).,, dxwwvdxuwC nnnnn ϕµ−ϕµ= β

Ω

β

Ω ∫∫ 
  

In a similar way, we define  CBA ,,  by replacing nu  and nw  by u and 
w, so 

( ) ( ) ( ) ( ) .,, 
 CBAdxmwvwdxmwu ++=ϕµ−ϕµ β

Ω

β

Ω ∫∫  

By Lemma 5.1, we have 

,lim  AAnn =+∞→   (5.6) 

for every .0>  We also have  

.lim  CCnn =+∞→   (5.7) 

In fact (see Remark A.2), ( ) ( ) ( ) ( )ϕµ→ϕµϕµ→ϕµ ,,,,, wwuu nn  in 

( ) βΩ nwmL ,,1  is bounded in Ω  and converges to βw  a.e. in βΩ w,  and v  
are bounded in .Ω  

We now consider the term . BBn −  For every measurable set ,Ω⊂E  
we define 

   ( ) ( ) ( );,11 dxmwuwEI nnn
E

n µϕβ= −β∫  

( ) ( ) ( );,12, dxmwwwvEI nnn
E

n µϕβ= −β∫ 
  
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( ) ( ) ( ).,3, dxmvwwEI nn
E

n 
 µϕβ= β∫  

In a similar way, we define ( ) ( ) ( )EIEIEI 3,2,1 ,,   by replacing nu  and 

nw  by u and w. We have 

( ) ( )
 WVIWVIBB nn UU 11 +≤−  (5.8) 

( ) ( ) ( )





 WIVIVI nn
2,2,2, +++  

( ) ( ) ( ) .3,3,2,








 WVIWVIWI n UU −++  

Since ,1≥β  the sequence 1−β
nw  is bounded in ( )., mL Ω∞  Then by 

Propositions 4.14 and 4.15, 

( ( ) ( ) ) .0limlim 2,1
0 =++∞→→ 


 VIWVI nnn U   (5.9) 

In a similar way, we prove 

( ( ) ( ) ) .0lim 2,1
0 =+→ 


 VIWVI U   (5.10) 

We have wu ≤  q.e. in ,W  so we also have 1−≤ pv   q.e. in .W  As 
1−βw  is bounded in ( ),, mL Ω∞  then we have ( ) ( )n

p
n wKWI α≤ ∫Ω

−12, 
  

( )dxm  for a suitable constant K. As nw  is bounded in [ ],0 ΩD  then we 

conclude that 

( ) .0limlim 2,
0 =+∞→→ 


 WInn   (5.11) 

In a similar way, we prove 

( ) .0lim 2,
0 =→ 


 WI   (5.12) 

We observe that ( ) ( ) vwvwn ,, µ→µ  in ( )mL ,1 Ω  (see Remark A.2), and 

wwn →  a.e. in Ω  and is bounded in ( )., mL Ω∞  Then 

( ) ( ).lim 3,3,





 WVIWVInn UU =+∞→   (5.13) 
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From (5.8)-(5.13), we have 

.0limlim 0 =−+∞→→


 BBnn   (5.14) 

We recall that , CCBBAAR nnnn −+−+−=  then the result 
follows from (5.6), (5.7), and (5.14). 

Lemma 5.3. Let ( ).0 Ω∈ζ p
n M  Let 0>  and ( ) 11 −≥β p  and 

define .



w
uwu n

n =  Then 

( ) ( )dxwuudxwuu nnn
p

n
U

nnn
p

n
U

ϕζ−ϕζ β−β− ∫∫ 



22  

converges to 0 as ,+∞→n  for every [ ] ( ).,0 mLD ΩΩ∈ϕ ∞I  

Proof. Let [ ] ( )mLD ,0 ΩΩ∈ϕ ∞I  and .
nnn uur −=  We recall that 

the sequences nu  and 
nu  are bounded in ( ),, mL Ω∞  then there exists a 

constant C such that .122 −−− ≤ϕ−ϕ p
nn

p
nn

p
n rCuuuu   Since nw  is 

bounded in ( ),, mL Ω∞  there exists a constant K such that .nn Kww ≤β  
Then 

( ) ( )dxwuudxwuu nnn
p

n
U

nnn
p

n
U

ϕζ−ϕζ β−β− ∫∫ 



22  

( ) ( ) ( ) .
11

1 pq
dxwdxrCKdxwrCK n

p
n

U
n

p
n

U
nn

p
n

U 







ζ








ζ≤ζ≤ ∫∫∫ −



  

The result follows from Proposition 4.13. 

Lemma 5.4. Let ( ).0 Ω∈ζ p
n M  Let 0>  and ( ) 11 −≥β p  and 

define ( ) [ ] ( ),,0 mLDw
uv ΩΩ∈Ψ= ∞I
  and let 

( ) ( ),12 dxwvdxwuuE n
p

nnnn
p

nn ϕζ−ϕζ= −+β

Ω

β−

Ω ∫∫ 
  

where [ ] ( ).,0 mLD ΩΩ∈ϕ ∞I  Then .0limlim 0 =+∞→→


 nn E  
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The proof is the same as in Lemma 4.4 [9] by using the Lemma 5.3 
and taking into account Propositions 4.14 and 4.15. 

6. The Case 1=f  

In this section, we will study the properties of the set ( )ΩK  of the 

functions w such that 

[ ] 0,0 ≥Ω∈ wDw  q.e. in ,Ω  

and 

( ) ( ) ( ),, dxvmdxmvw ∫∫ ΩΩ
≤µ  

for every [ ].0 Ω∈ Dv  

The results of the present section will be useful in the next section to 
investigate the convergence of the relaxed problems. 

Let us observe that, if 0w  is the solution of the Dirichlet problem 

( ) ( ) ( ),,0 dxvmdxmvw ∫∫ ΩΩ
=µ  

[ ],00 Ω∈ Dw  for every [ ],0 Ω∈ Dv  then by Proposition 4.5, we have 

,0 0ww ≤≤  for every ( ).Ω∈ Kw  As ( ),,0 mLw Ω∈ ∞  then the functions 

w in ( )ΩK  are uniformly bounded. We will also prove that ( )ΩK  is also 

weakly compact in [ ].0 ΩD  

Given ( ),Ω∈ Kw  we define the Radon measure σ  by 

( )( ) ( ),,, dxmvwvv µ−>=σ< ∫Ω   (6.1) 

so [ ]Ω∈σ −1D  and is non-negative, then it is a non-negative Radon 

measure. 
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Our aim in this section is to prove the characterization of ( )ΩK  as the 
set of the solutions of all relaxed Dirichlet problems (3.2) corresponding to 

.1=f  

Theorem 6.1. The set ( )ΩK  is compact in the weak topology of 

[ ].0 ΩD  Moreover, a function [ ]Ω∈ 0Dw  belongs to ( ),ΩK  if and only if 

there exists a measure ( )Ω∈ζ p
0M  uniquely determined by w such that w 

is the solution of the relaxed Dirichlet problem (3.2) relative to the Borel 
measure .ζ  The measure ζ  is uniquely determined by ( ).Ω∈ Kw  More 

precisely, for every ( )Ω∈ Kw  and for every Borel set ,Ω⊂B  it results 

( ) ( { } ) ,0,0,1 =Ω=σ=ζ
−∫ wBcapif

w
dB ppB

I   (6.2) 

( ) ( { } ) ,0,0, >Ω=+∞=ζ wBcapifB p I  

where σ  is the non-negative Radon measure defined in (6.1). 

Before to prove Theorem 6.1, let us observe that from (6.2), we have 

{ }( ) ( ),0 1 dxwwB p
B

ζ=>σ −∫I  

for every Borel set .Ω⊂B  

To prove Theorem 6.1, we need some preliminaries results. 

Lemma 6.2. Let ( )Ω∈ζ p
0M  and let [ ] ( ).,0 ζΩΩ∈ pLDu I  Let ∈nu  

[ ] ( )ζΩΩ ,0
pLD I  be the solution of the problem 

( ) ( ) ( )dxvuudxmvu n
p

nn ζ+µ −

ΩΩ ∫∫ 2,  

( ) ( ),22 dxuvmundxvmuun p
n

p
n

−

Ω

−

Ω ∫∫ =+  

for every [ ] ( ).,0 ζΩΩ∈ pLDv I  Then nu  converges to u strongly in [ ]Ω0D  

and in ( )., ζΩpL  
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Lemma 6.3. Let ( )Ω∈ζ p
0M  and let w be the solution of the problem 

(3.2) with .1=f  Then ( ) ,∞=ζ B  for every Borel set Ω⊂B  with pcap  

{ }( ) .00 >=wB I  

The proofs are the same as in [9], since they depend on Theorem 4.2 
and on the quasi-continuity of the functions in [ ],0 ΩD  [5], but do not 
depend on special properties of the form. 

Lemma 6.4. Let ( )., 0 Ω∈λ pMν  Assume that there is a function w in 

[ ] ( ) ( )ν,,0 ΩλΩΩ pp LLD II  such that 

( ) ( ) ( ) ( ),, 2 dxvmdxwvwdxmvw p ∫∫∫ Ω

−

ΩΩ
=λ+µ  (6.3) 

( ) ( ) ( ) ( ),, 2 dxvmdxwvwdxmvw p ∫∫∫ Ω

−

ΩΩ
=+µ ν  (6.4) 

for every [ ] ( ) ( ).,,0 νΩλΩΩ∈ pp LLDv II  Then .ν=λ  

The proof is the same as in [9], since it depends on comparison 
principles, on Proposition 1.1, and on the quasi-continuity of the functions 
in [ ],0 ΩD  [5], but does not depend on special properties of the form. 

Proof of Theorem 6.1. At first, we prove that ( )ΩK  is compact in 

the weak topology of [ ].0 ΩD  Let nw  be a sequence in ( ).ΩK  Since ( )ΩK  

is bounded in [ ],0 ΩD  we may assume that nw  converges weakly in 
[ ]Ω0D  to a function w. We have to prove that ( ).Ω∈ Kw  

Consider ( ) ( ) [ ] ( );,,, 00 ΩΩ∈µ−>=σ< ∫∫ ΩΩ
CDvmvwdxvmv nn I nσ  

is a bounded sequence of positive elements in [ ].1 Ω−D  Then nσ  is also a 

bounded sequence of Radon measures, i.e., ( )Knσ  is bounded for every 

compact set .Ω⊂K  By Remark A.2, we have ( ) ( ) →µ∫Ω dxmvwn ,  

( ) ( ),, dxmvwµ∫Ω  for every [ ].0 Ω∈ Dv  Then 
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( ) ( ) ( ),, dxvmdxmvw ∫∫ ΩΩ
≤µ  

for every [ ].0 Ω∈ Dv  From the comparison principles, we have 0≥w  q.e. 

in .Ω  Then ( ).Ω∈ Kw  

As second step, we assume that ( )Ω∈ζ p
0M  and that w is a solution 

of (3.2) with ,1=f  and we prove that ( ).Ω∈ Kw  

From the comparison principles, we have ,0≥w  then for every 

,0≥v  we have ( ) ,02 ≥ζ−
Ω∫ dxwvw p  so ( ) ( ) ( )., dxvmdxmvw ∫∫ ΩΩ

≤µ  

Then ( ).Ω∈ Kw  

As third step, we assume ( )Ω∈ Kw  and we prove that there exists 

( )Ω∈ζ p
0M  such that w is a solution of (3.2) relative to ζ  and .1=f  The 

proof is analogous to the one given in [9], since it is founded only on the 
properties of the measure ζ  and on the quasi-continuity of w. 

Lemma 6.5. Let ( ),0 Ω∈ζ pM  let w be the solution of (3.2) relative to 

ζ  and ,1=f  and let .1≥β  Then, the set { [ ] ( )}ΩΩ∈ϕϕβ 00 CDw I  is 

dense in [ ] ( ).,0 ζΩΩ pLD I  

Proof. We have [ ] ( ) ( )mLLDw p ,,0 ΩζΩΩ∈ ∞II  and ,1≥β  then 

the function ϕβw  is in [ ] ( ) ( )mLLD p ,,0 ΩζΩΩ ∞II  for every [ ]Ω∈ϕ 0D  

( ).0 ΩCI  

To prove the result, we have to find for every function [ ]Ω∈ 0Du  

( ),, ζΩpLI  a sequence [ ] ( )ΩΩ∈ϕ 00 CDn I  such that nw ϕβ  converges 

to u both in [ ]Ω0D  and in ( )., ζΩpL  By a separation of the positive and 

negative part and by an approximation by truncation, we may assume 

( )mLu ,Ω∈ ∞  and 0≥u  q.e. in .Ω   
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Let nu  be defined as in Lemma 6.2. By the comparison principles, we 

have Cwun ≤≤0  q.e. in ,Ω  where 
( )

.11 −
Ω

−
∞= p

L
p unC  From Lemma 

6.2, nu  converges to u both in [ ]Ω0D  and in ( )., ζΩpL  As consequence, 
we may assume without loss of generality that there exists a constant C 

such that Cwu ≤≤0  q.e. in .Ω  We observe that {( ) }0>− +Cu  

{ }.>⊂ w  Let ( )+−=  Cuu  for arbitrary .0>  We have 
( )

.
ββ

=



w
u

w
u  

We recall that [ ] ( ),,0 mLDu ΩΩ∈ ∞I  then [ ] ( ).,0 mLD
w
u

ΩΩ∈ ∞
β

I  

There exists a sequence [ ] ( )ΩΩ∈ϕ 00, CDn I  bounded in ( ),, mL Ω∞  

which converges to 
β

=
w
uz 

  in ( ),0 ΩD  then q.e. in ,Ω  then also -ζ  a.e. 

in .Ω  

We recall that [ ] ( )mLDw ,0 ΩΩ∈ ∞I  and ,1≥β  then ,nw ϕβ  

converges to  uzw =β  in [ ].0 ΩD   

We want to prove that, it also converges in ( )., ζΩpL  We have that 

,nw ϕβ  is bounded in ( ) ( ),,, ζΩΩ∞ pLmL I  then is bounded in ( )., ζΩ∞L  

Moreover, it converges -ζ  a.e. to . uzw =β  Then, it converges strongly 

in ( )ζΩ,pL  (use the dominated convergence theorem). 

As u  converges to u as 0→  both in [ ]Ω0D  and in ( ),, ζΩpL  the 
result follows. 

7. The -µγ convergence 

7.1. Definition of the -µγ convergence 

In this section, we introduce the notion of -µγ convergence in ( ).0 ΩpM  

This enables us to conclude about the object of the paper. 
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Definition 7.1. Let nζ  be a sequence in ( )Ωp
0M  and let ( ).0 Ω∈ζ pM  

We say that -µγζn converges to ,ζ  if for every [ ],1 Ω∈ −Df  the solutions 

nu  of the problem (3.2n) relative to f and nζ  converge weakly in [ ]Ω0D  as 
+∞→n  to the solution u of the problem (3.2) relative to f and .ζ  

Remark 7.2. The solution of the problem (3.2n) depends continuously 
on f uniformly with respect to nζ  (Theorem 4.3). Then a sequence -µγζn  
converges to ,ζ  if the solution of the problem (3.2n) relative to f and nζ  
weakly converges in [ ]Ω0D  to the solution of the problem (3.2), for every f 

in a dense subset of ( )Ω−1D  as ( ).Ω∞L  

Let nζ  be a sequence in ( )Ωp
0M  and let nw  be the solution of the 

problem (3.2n) relative to ,1=f  and let w be the solution of the problem 
(3.2) relative to .1=f  

Theorem 7.3. Let ( ),, 0 Ω∈ζζ p
n M  and let ( )wwn  be solution of (3.2n), 

(3.2) relative to 1=f  and ( ).ζζn  The following conditions are equivalent: 

(a) nw  weakly converges to w in [ ].0 ΩD  

(b) -µγζn converges to .ζ  

Proof. The implication ( ) ( )ab ⇒  is direct consequence of the 

definition of -µγ convergence taking .1=f  

Assume that (a) holds. Given ( ),Ω∈ ∞Lf  let nu  be the solution of the 
problem (3.2n). From Theorem 4.1, we have that nu  is bounded in [ ],0 ΩD  
then we may assume that nu  weakly converges to some function 

[ ].0 Ω∈ Du  

We have to prove that u is a solution of (3.2). 

By the comparison principles, we have nn Cwu ≤  q.e. in ,Ω  where 

( )
.1

1
−
∞ Ω

= p
L

fC  As ,+∞→n  we have Cwu ≤  q.e. in .Ω  
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For ,0>  let Ψ  be the locally Lipschitz function defined in Section 5 

and define ( ).
 w

uv Ψ=  We have [ ] ( ).,0 mLDv ΩΩ∈ ∞I  Let ( )1−≥β p  

1  and let [ ] ( ).00 ΩΩ∈ϕ CD I  We recall that [ ] IΩ∈ 0Dwn  ( ),Ω∞L  so 

we can take ϕ= β
nwv  as test function in (3.2n) and ϕ= β

nwvv   as test 

function in (3.2n) relative to .1=f  We obtain 

( ) ( ) ( ) ( )dxmwvwdxmwu nnnn ϕµ−ϕµ β

Ω

β

Ω ∫∫ ,,  (7.1) 

( ) ( )dxwvwwdxwuu nnn
p

nnnn
p

n ϕζ−ϕζ+ β−

Ω

β−

Ω ∫∫ 
22  

( ) ( ).dxmwvdxmfw nn ϕ−ϕ= β

Ω

β

Ω ∫∫   

From Lemmas 5.2 and 5.4, we obtain 

( ) ( ) ( ) ( )dxmwvwdxmwu nnnn ϕµ−ϕµ β

Ω

β

Ω ∫∫ ,,  (7.2) 

( ) ( )dxwdxwuu n
p

nnnn
p

n ϕζ−ϕζ+ −+β

Ω

β−

Ω ∫∫ 12  

( ) ( ) ( ) ( ) ,,, 
 nRdxmwvwdxmwu +ϕµ−ϕµ= β

Ω

β

Ω ∫∫  

with .0suplimlim 0 =+∞→→


 nn R  

As nw  is bounded in [ ],0 ΩD  then it converges strongly to w in 

( )., mLp Ω  As consequence for every ,0>  we have 

( ) ( )







ϕ−ϕ β

Ω

β

Ω
+∞→ ∫∫ dxmwvdxmfw nnn lim  

( ) ( ).dxmwvdxmfw ϕ−ϕ= β

Ω

β

Ω ∫∫   

The above limit gives 
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( ) ( ) ( ) ( )dxmwvwdxmwu ϕµ−ϕµ β

Ω

β

Ω ∫∫ ,,  

( ) ( ) , Rdxmwvdxmfw +ϕ−ϕ= β

Ω

β

Ω ∫∫  

where .0lim 0 =→


 R  

Defining [ ( )] ( ),,, dxmvwvv µ−>=σ< ∫Ω  we have that [ ]Ω∈σ −1D  

defines a non-negative Radon measure. From the last inequality, we have 

( ) ( ) ( ) ( ) ., 
 Rdxmfwdxwvdxmwu +ϕ=ϕσ+ϕµ β

Ω

β

Ω

β

Ω ∫∫∫  (7.3) 

We recall that Cwu ≤  q.e. in ,Ω  then from (5.3), we have ≤v  

( )( )1−pC   q.e. in .Ω  Recalling the definition of ,Ψ  we obtain the 

convergence q.e. in Ω  of βwv  to .12 +−β− pp uwu  As βwv  is bounded in 

( ),, mL Ω∞  we have ( ) ( ).lim 12
0 dxuwudxwv pp ϕσ=ϕσ +−β−

Ω
β

Ω→ ∫∫   

From (7.3), we have 

( ) ( ) ( ) ( )., 12 dxmfwdxuwudxmwu pp ϕ=ϕσ+ϕµ β

Ω

+−β−

Ω

β

Ω ∫∫∫  

From Theorem 6.1, we have 

( )
{ }

( )dxuwudxuwu pp
w

pp ϕσ=ϕσ +−β−

>

+−β−

Ω ∫∫ 12
0

12  

  ( ).2 dxuwu p ϕζ= β−

Ω∫  

Then from (7.3), we obtain 

( ) ( ) ( ) ( )., 2 dxmfwdxuwudxmwu p ϕ=ϕζ+ϕµ β

Ω

β−

Ω

β

Ω ∫∫∫  

Taking into account Lemma 6.5, we have that u is the solution of (3.2) 

relative to ζ  and f. Then -µγζn converges to .ζ  
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Remark 7.4. The uniqueness of the -µγ limit is an easy consequence 
of Theorem 7.3 and Lemma 6.4. 

7.2. Compactness and density results 

The following result proves the compactness of ( )Ωp
0M  with respect 

to the -µγ convergence. 

Theorem 7.5. Every sequence in ( )Ωp
0M  contains a -µγ convergent 

subsequence. 

Proof. The result follows easily from Theorems 6.1 and 7.3. 

The case of Dirichlet problems in perforated domains is a particular 
case and it is considered in the following theorem, which is a consequence 
of Theorem 7.5. 

Theorem 7.6. Let nΩ  be an arbitrary sequence of open subsets of .Ω  

Then there exists a subsequence, still denoted by ,nΩ  and a measure 

( )Ω∈ζ p
0M  such that for every [ ],1 Ω∈ −Df  the solution nu  of the 

problem ( ) ( ) [ ] [ ] [ ],,,, 0, 0 nnDDn Duvfdxmvu nnn
Ω∈>=<µ ΩΩ′Ω∫  for every 

0Dv ∈  [ ],nΩ  extended by 0 to ,Ω  converges weakly in [ ]Ω0D  to the 

solution u of the problem (3.2) relative to a suitable Borel measure 

( ).0 Ω∈ζ pM  

Proof. The conclusion follows easily from Theorem 7.5 and Remark 
7.2. 

Theorem 7.7. Every measure ( )Ω∈ζ p
0M  is the -µγ limit of a 

sequence nζ  of Radon measures in ( )Ωp
0M  such that the sequence of 

solutions nw  of the problem (3.2n) relative to ,1=f  and nζ  converges 

strongly in [ ]Ω0D  to the solution of the problem (3.2) relative to 1=f  and 

.ζ  
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Proof. By (6.2), a measure ( )Ω∈ζ p
0M  is a Radon measure, if the 

solution w of the problem (3.2) relative to 1=f  and ζ  is such that 
,0inf >wK  for every compact set .Ω⊂K  

We denote by [ ],00 Ω∈ Dw  the solution of the equation ( ,0wµ∫Ω  

) ( ) ( )dxvmdxmv ∫Ω=  for every [ ],0 Ω∈ Dv  then 0w  satisfies the above 

inequality (Corollary 4.5). 

Fix ( )Ω∈ζ p
0M  and denote by ( ),Ω∈ Kw  the solution of the problem 

(3.2) relative to 1=f  and .ζ  We define .1
0wnwwn =  It is easy to see 

that nw  is a nonnegative subsolution of the equation defining ,0w  so 
( ).Ω∈ Knw  Moreover, the function nw  satisfies the inequality 

,0inf >nK w  for every compact set Ω⊂K  and converges strongly to w 

in [ ].0 ΩD  Then the measures nζ  associated to ,nw  which are Radon 

measures, µγ  converge to ζ  by Theorem 7.3. 

The following result deals with the convergence of the solutions and 
energies, when also f varies. 

Theorem 7.8. Let nζ  be a sequence of measures in ( ),0 ΩpM  which 

-µγ converges to the measure ( )Ω∈ζ p
0M  and let nf  be a sequence in 

[ ],1 Ω−D  which converges to [ ].1 Ω∈ −Df  Define nu  as the solution of the 

problem (3.2n) relative to nf  and ,nζ  and u as the solution of the problem 

(3.2) relative to f and .ζ  Then, the sequence nu  converges to u weakly in 

[ ]Ω0D  and strongly in [ ].ΩrD  Finally, the energies ( ) n
p

nn umu ζ+α  

converge to ( ) ζ+α pumu  weakly* in the sense of Radon measures on .Ω  

Proof. It is enough to prove that 

( ) ( ) ( )






 ζφ+φα ∫∫ ΩΩ
+∞→ dxudxmu n

p
nnnlim  
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( ) ( ) ( ) .






 ζφ+φα= ∫∫ ΩΩ
dxudxmu p  

For every [ ] ( ).00 ΩΩ∈φ CD I  The proof of the above relation is the same 
as in [9] taking into account Theorem A.1 and Remark A.2. 

7.3. Localization properties 

We end the section by proving the local character of the -µγ  
convergence. The following result deals with the local solutions in an 
open subset U of ,Ω  and we do not pay any care to the boundary 

conditions on .U∂  In the following, we denote by ,.., U><  the pairing 

between [ ]UD 1−  and [ ].0 UD  

Theorem 7.9. Let nζ  be a sequence of measures in ( ),0 ΩpM  which 

-µγ converges to the measure ( ).0 Ω∈ζ pM  Let U be an open subset of ,Ω  

let nf  be a sequence in [ ],1 UD−  which converges to [ ].1 UDf −∈  Define 

nu  as the solution of the problem 

( ) ( ) ( ) ,,, 2
Unnn

p
n

U
n

U
vfdxvuudxmvu >=<ζ+µ −∫∫  (7.4) 

[ ] ( ),, n
p

n ULUDu ζ′∈ I  for every ,UU ⊂⊂′  for every [ ] pLUDv I0∈  

( )nU ζ,  with ( ) ,psup Uv ⊂⊂  and u as the solution of the problem 

( ) ( ) ( ) ,,, 2
U

p
UU

vfdxuvudxmvu >=<ζ+µ −∫∫  (7.5) 

[ ] ( ),, ζ′∈ ULUDu pI  for every ,UU ⊂⊂′  for every [ ] pLUDv I0∈  

( )ζ,U  with ( ) .psup Uv ⊂⊂  We have that nu  converges weakly to u in 

( ),UDloc  strongly in [ ] ,1, prDr <<Ω  and ( )vuk ,µ  converges in 1
locL  

( )U  to ( )vu,µ  or every [ ]UDv 0∈  with ( ) .psup Uv ⊂⊂  Finally, the 

energies ( ) n
p

nn umu ζ+α  converge to ( ) ζ+α pumu  weakly* in the 

sense of Radon measures on U. 
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Proof. Fix an open set UU ⊂⊂′  and a function [ ] ∞∈/ LUDv I0  

( )mU ,  with 0≥/v  on 1, =/vU  on .psup, UvU ⊂/′  

We use nuvv /=  as test function in (7.4), and we obtain 

( ) ( ) ( ) ,,, Mdxmuvuuvfdxu nn
U

Unnn
p

n
U

≤/µ−>/<≤ζ ∫∫ ′
 

for a suitable constant M. By Theorem A.1, the sequence nu  converges to 

u weakly in [ ]UDloc  and ( ) puun
1

−α  converges strongly to 0 in ( ),, mULr  

for ;1 pr <<  moreover, ( )vuk ,µ  converges in ( )UL1  to ( )vu,µ  for every 

[ ]UDv 0∈  with ( ) .psup Uv ⊂⊂  We recall that nu  is bounded in [ ].UD  

Then Remark A.2 gives the second part of the result. Define ( ) exp=φ x  

( ) ,11 







/
− xv  if ( ) 0>/ xv  and ( ) ,0=φ x  if ( ) .0=/ xv  Then [ ] ∞∈φ LUD I0  

( )., mU  Let us define ., uzuz nn φ=φ=  The function nz  is the solution 

of the problem 

( ) ( ) ( ) ,,, 2 >=<ζ+µ −

ΩΩ ∫∫ vgdxvzzdxmvz nnn
p

nn   (7.6) 

[ ] ( ),,0 n
p

n LDz ζΩΩ∈ I  for every [ ] ( ),,0 n
pLDv ζΩΩ∈ I  where 

( ) ( ) ( ) ( )dxmvudxmvuvg n
p

U
n

U
n ,,, 1µφ−φµ=>< −∫∫  

 ( ) ( ) ( )., 11 dxmuvdxvmf p
n

U
p

n
U

−− φµ−φ+ ∫∫  

Define 

( ) ( ) ( ) ( )dxmvudxmvuvg p
UU

,,, 1µφ−φµ=>< −∫∫  

 ( ) ( ) ( )., 11 dxmuvdxvmf p
U

p
U

−− φµ−φ+ ∫∫  
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Taking into account (2.6), we have that >< vgn ,  converges to >< vg,  

uniformly with respect to [ ]Ω∈ 0Dv  with [ ] .1
0

≤ΩDv  Then ng  

converges to g in [ ].1 Ω−D  We recall that nz  converges to z weakly in 

[ ],0 ΩD  then from Theorem 7.8, z is the solution of the problem 

( ) ( ) ( ) ,,, 2 >=<ζ+µ −

ΩΩ ∫∫ vgmzvzdxmvz p   (7.7) 

[ ] ( ),,0 ζΩΩ∈ pLDz I  for every [ ] ( ).,0 ζΩΩ∈ pLDv I  Since 1=φ  in 

,U ′  we have zu =  in ,U ′  then ( )., ζ′∈ ULu p  Moreover, if [ ] IΩ∈ 0Dv  

( )ζΩ,pL  with ,psup Uv ′⊂⊂  then ,,,, Uvgvgvg >=<>>=<< Ω  then 

(7.5) follows from (7.7). The convergence of the energies follows as in 
Theorem 7.8. 

Theorem 7.10. Let nζ  be a sequence of measures in ( ),0 ΩpM  which 

-µγ converges to the measure ( ).0 Ω∈ζ pM  Let U be an open subset of ,Ω  

then -µγζn converges to the measure ζ  in U. 

Proof. Let [ ]UDf 1−∈  and denote by ,nu  the solution of the problem 

(3.2) relative to f and nζ  with Ω  replaced by U. There is a subsequence, 

still denoted by ,nu  that converges weakly in [ ]Ω0D  to a function 

[ ].0 Ω∈ Du  From Theorem 7.9, we have ( )ζ′∈ ,ULu p  for every open set 

UU ⊂⊂′  and u is a solution of (7.5). 

To conclude, we have to prove that ( )., ζ∈ ULu p  The proof is the 

same as in [9], taking into account that for every [ ],0 UDv ∈  there exists 

a sequence nv  such that nv  converges strongly to u in ( ) ⊂⊂Ω nvD psup,0  

uvU n ≤,  q.e. in U, and 0≥nuv  q.e. in U. We also recall that, if 

( )ζ′∈ ,ULv p  for every open set ,UU ⊂⊂′  then ( )., ζ∈ ULv p
n  We may 

also assume that nv  converges to u q.e. in U. 
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Corollary 7.11. Let ( ),, 0 Ω∈ζζ p
n M  and iΩ  be a family of open 

subsets of ,Ω  which covers .Ω  Then -µγζn converges to the measure ζ  in 

,Ω  if and only if -µγζn converges to the measure ζ  in iΩ  for every i. 

Proof. The conclusion follows by Theorems 7.5, 7.10, and from the 

uniqueness of the -µγ limit. 

8. Appendix 

Theorem A.1. Let [ ]Ω∈ Duk  with ( ) ( ) [ ],, 1 Ω∈≤α −
Ω∫ DfCdxmu kk  

and kζ  Radon measures, be sequences such that 

uuk →  weakly in [ ];ΩlocD  

ffk →  weakly in [ ];1 Ω−
locD  

ζ→ζk  weakly* in the space of Radon measures. 

Finally, we assume 

( ) ( ) ( ),,, dxvvfdxmvu kkk ζ+>=<µ ∫∫ ΩΩ
 

for every [ ] ( ).00 ΩΩ∈ CDv I  Then ( ) puuk
1

−α  converges strongly to 0 in 

( ) .1,, prmLr <<Ω  

Proof. We observe that since the sequence ku  weakly converges to u 

in ( ),ΩlocD  then [ ]Ω∈ Du  and the sequence ( ) puuk
1

−α  is bounded in 

( )., mLp Ω  Then to prove the result, it is enough to prove that every 

subsequence of ( ) puuk
1

−α  contains a subsequence, which converges to 0 

a.e. in .Ω  We denote 

( ) ( ).,, uuuuuug kkkk −µ−−µ=  
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By (2.2) and (2.4), to prove the result, it is enough to prove that kg  

converges to 0 a.e. in .Ω  Fix a compact ;Ω⊂K  there exists [ ]Ω∈φ 0DK  

with 1,10 =φ≤φ≤ KK  on K and ( ) ( )., mLK Ω∈φα ∞  Let δ/v  denote the 

truncation by ,δ  i.e., 

( ) ( ) ( ) .for;for δ≥δ=/δ≤=/ yysignyvyyyv  

We now use as test function ( ) [ ]Ω∈−/φ= δ 0Duuvv kK  (here, we use the 

truncation rule and the Leibniz inequality for the form). Then, 

( ( )) ( )dxmuuvu kKk −/φµ δ
Ω∫ ,  

( ( )) ( ) ( ) ( ) ( )dxmuuuvdxmuuvu KkkkkK φµ−/+−/µφ= δ
Ω

δ
Ω ∫∫ ,,  

( ) ( ) ( )., dxuuvuuvf kkKkKk ζ−/φ+−/φ= δ
Ω

δ ∫  

We have that ( )uuv k −/δ  converges to 0 strongly in ( ),, mLp Ω  and then 

weakly to 0 in [ ].0 ΩD  Then 

( ) ( ) ( ) ,0,lim =φµ−/δ
Ω

+∞→ ∫ dxmuuuv Kkkk  

and 

( ) .0,lim =−/φ δ+∞→ uuvf kKkk  

Moreover, kζ  is bounded in [ ],Ω′D  and 

( ) ( ) ( ) .2 δ≤−/≤ζ−/φ ∞δδ
Ω∫ KLkKkkK CuuvCdxuuv  

We have so proved that, for δ  fixed 

( ( )) ( ) .2,lim δ≤−/µφ δ
Ω

+∞→ ∫ KkkKk Cdxmuuvu  

Since by the same methods, we have 
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( ( )) ( ) ,0,lim =−/µφ δ
Ω

+∞→ ∫ dxmuuvu kKk  

we obtain 

( ( ( )) ( ( ))) ( ) .2,,lim δ≤−/µ−−/µφ δδ
Ω

+∞→ ∫ KkkkKk Cdxmuuvuuuvu  

Denote 

( ( ( )) ( ( ))).,, uuvuuuvue kkkk −/µ−−/µ= δδ  

Splitting K into the two sets { ( ) ( ) }δ≤−∈=δ xuxuKxS kk ;  and =δ
kG  

{ ( ) ( ) },; δ>−∈ xuxuKx k  and using the Hölder inequality, we obtain 

for 1<θ  

( ) ( ) ( )dxmedxmedxme kGkSkK kk

θθθ ∫∫∫ δδ
+=  

( ( )) ( ) ( ( )) ( ) .11 θ−δθθ−δθ ∫∫ δδ
+≤ kk

Gkk
S

GmdxmeSmdxme
kk

 

Since ( )δkGm  tends to 0 as ,0→k  then ke  is bounded in ( )mL ,1 Ω  and 

( ) ( ) ( ) .2suplim 1 θθ−θθ
+∞→ δΩ≤∫ mCdxme KkK

k  

As 0>δ  is an arbitrary, the above relation implies that θ
ke  converges 

strongly to 0 in ( ),,1 mKL  when .+∞→k  Then, since K is an arbitrary 

compact subset of ,Ω  at least after extraction of a subsequence, we have 

( ) 0→xek  a.e. in ,Ω  and this concludes the proof. 

Remark A.2. From the previous result, we obtain that the sequence 
( )vuk ,µ  converges to ( )vu,µ  pointwise a.e. in Ω  for every fixed 

[ ].0 Ω∈ Dv  The assumptions (2.3), (2.5) imply that the functions ( )vuk ,µ  

are uniformly integrable. Then, the sequence ( )vuk ,µ  converges to 

( )vu,µ  strongly in ( )mL ,1 Ω  for every fixed [ ].0 Ω∈ Dv  
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